Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The flu virus is a wily target, constantly mutating to avoid attack from the immune system and from antiviral drugs like Tamiflu. But in research presented Sunday at the annual meeting of the American Society for Cell Biology (ASCB) in San Diego, scientists announced a new method for fighting pandemic influenzas such as H1N1 (swine) and H5N1 (avian).

The approach involves using massive amount of computer power to simulate never-before-seen conformations of a virus. Using the method, researchers at the University of California at San Diego have not only identified a new molecular target for influenza drugs, they have also found drugs already approved by the U.S. Food and Drug Administration that just might hit the target perfectly.

The target in question is a single, large protein called neuraminidase–one of two major proteins present on the surface of the influenza virus–that allows newly replicated viruses to be released into their host. Because most pandemic versions share the same neuraminidase subtype, N1, the protein is an ideal drug target.

Most molecular imaging or modeling focuses on determining the arrangement of atoms in a molecule’s crystal structure–a lengthy, energy-intensive process that provides a precise way to capture the molecule’s shape but only in one conformation, frozen at a single moment in time. In contrast, the new “relaxed complex” method models the virus protein molecule in a state that provides a better understanding of how the protein behaves and even revealing conformations that rarely occur.

Biochemist Andrew McCammon and undergraduate lab member Daniel Dadon used a sophisticated computer program to simulate all possible conformations–27 in all–of the H1N1 virus’s flexible neuraminidase protein. Rather than forcing the protein into a single crystal structure’s conformation, “[we] got a movie of how the protein would behave in nature,” Dadon says. “It’s like frames from a film, rather than a single photograph.”

Dadon aligned each of those 27 neuraminidase conformations and found that all of them had a binding site that remained unchanged, a single spot that could act as a prime inhibitor target. The researchers then looked at a library of drugs already approved by the FDA. After breaking molecular models of the drugs down into small fragments, they ran them through a colossal search algorithm in order to find those molecules with the highest affinity for the neuraminidase binding site.

3 comments. Share your thoughts »

Credit: Daniel Dadon and Jacob Durrant

Tagged: Biomedicine, vaccine, H1N1, swine flu, drug, computer models

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me