Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Platinum normally plays a crucial role in fuel cells and in the production of hydrogen. Now a group of researchers has shown how to get the same kind of reactivity using a metal–nickel–that is a thousand times less expensive than platinum. The group– research scientist Vincent Artero, and Alan Le Goff and Serge Palacin at the Commissariat à l’Énergie Atomique near Paris–used nickel-based compounds chemically bound to carbon nanotubes.

Platinum is typically used in the water-splitting process because it’s such an effective catalyst. “The problem with platinum is that it’s a very expensive metal and there is not enough of it on Earth to sustain a worldwide hydrogen economy,” says Artero.

Electrodes made using the new catalyst would be about 20 percent cheaper than those made of platinum, Artero says. Given that the platinum makes up roughly a third of the cost of fuel cells, this could have a significant impact on the price of fuel cell technology.

The new compounds are based on a type of enzyme called hydrogenase. Normally found in bacteria and algae that live in anaerobic (or oxygen-free) conditions, these enzymes are used by these organisms as a catalyst to metabolize hydrogen, says Artero. “They use exactly the same process as fuel cells to stay alive,” he says.

In recent years, researchers have shown great interest in using molecular chemistry to try to mimic the structure of these natural catalysts. Because the active components of these molecular compounds are as reactive as platinum but consist of nickel or iron instead, they promise to be much cheaper to use.

However, until now, synthetic hydrogenese molecules–such as those developed by Daniel DuBois at Pacific Northern National Laboratories in Richland, WA–have only been demonstrated in solution form. To be of practical use, the molecules need to be bound to an electrode, rather than floating in a liquid.

By modifying the nickel-based active components of these compounds, Artero and colleagues found a way to attach the molecules to carbon nanotubes. “The nanotubes have two advantages–they are very good electron conductors, and they have a very high specific surface area,” Artero says. This means it’s possible to load a great deal of the catalytic material onto its surface, he says.

0 comments about this story. Start the discussion »

Credit: P. D. Tran/ CEA

Tagged: Energy, Materials, fuel cells, catalysts, platinum, hydrogen fuel cells, metal

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »