Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

An endoscope equipped with an infrared laser and a tiny mirror might one day help physicians diagnose early signs of cancer and other diseases and aid in surgery. A researcher at the University of Florida has designed a prototype device that captures images up to two millimeters beneath the surface of tissues, providing high-resolution, three-dimensional images at video-rate speeds.

In typical endoscopy, doctors thread a long, thin, camera-equipped fiber through a patient’s airway or gastrointestinal tract to search out abnormalities. The images, displayed on a monitor in real time, can reveal signs of infection, internal bleeding, ulcers, and tumors on tissue surfaces. But today’s endoscopes only show a superficial picture–they don’t reveal what’s going on under the surface, such as early tumor development.

“Eighty-five percent of cancers originate from the epithelium, which is about two millimeters deep,” says Huikai Xie, associate professor of electrical and computer engineering and director of the Biophotonics and Microsystems Laboratory. In addition to its potential for detecting early signs of cancer, he says, the scope might prove useful as a surgical tool, helping surgeons determine how deep a tumor is embedded in tissue. “If you need to remove the tumor, the surgeons have a hard time determining when to stop. With a real-time, high-resolution tool, they will be sure.”

John Saltzman, a gastroenterologist and director of endoscopy at Brigham and Women’s Hospital, says such a technique would help identify early signs of cancer, particularly in the esophagus. In a condition called Barett’s esophagus, for example, cells lining the esophagus undergo a change that increases the risk of cancer, says Saltzman, who is not involved in the research. “This technology would be an advantage for us to detect such abnormalities.”

Instead of a tiny camera at the tip, Xie’s endoscope is equipped with an infrared scanner and a tiny mirror, which scans tissue layer by layer to provide a three-dimensional image with microscopic resolution. The technique is based on a method called optical coherence tomography (OCT)–as a laser beams through the arm of an OCT scope, it hits tissue, and reflects some light back, while the rest scatters. Different tissues, such as cancer versus normal tissue, reflect light differently. An interferometer measures the reflected light and subtracts the scattered light. Altering the length of the arm alters the depth at which light is directly reflected back, producing images of different layers, which together form a three-dimensional image. The method is similar to ultrasound technology, and is often called “optical ultrasound.”

0 comments about this story. Start the discussion »

Credit: Huikai Xei

Tagged: Biomedicine, cancer, surgery, infrared, optical coherence tomography

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »