Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A new method of making flu vaccines is faster, more efficient, and more robust than the one that has been in use for the last 50 years. It has the potential to scale up rapidly, to deal with new strains of influenza such as this year’s H1N1, and to help stem a pandemic tide. However, a U.S. Food and Drug Administration advisory panel voted in late November not to approve the technology, which involves growing key vaccine ingredients inside caterpillar cells instead of in chicken eggs, as is currently done. The FDA says that the company behind the new approach, Protein Sciences, based in Meriden, CT, needs to test it further before the method can be approved for use in the United States.

Jose Romero, chief of pediatric disease at Arkansas Children’s Hospital and a member of the 11-person FDA panel, says that, while the company has more to do in order to prove safety, the cell-based technology shows considerable promise.

“This type of technology is going to move traditional influenza vaccinology into the 21st century,” says Romero. “We recognize that there may come a day when a strain does arrive that cannot be supported by growth in traditional egg-based technology, and this and other cell-based technologies can breach that problem and provide us with another avenue for developing vaccines.”

Today’s egg-based vaccine technology is slow and unwieldy, requiring at least six months’ of production time and millions of eggs to supply enough doses for a regular flu season. If a new virus appears unexpectedly, the antiquated system wouldn’t be able to gear up fast enough to produce a new vaccine, many experts agree. What’s more, if the virus itself were derived from birds, it might reduce the supply of eggs, hampering the country’s main means of vaccine production.

For the past decade, Protein Sciences, along with a number of other companies, has been looking to cell-based vaccines as a more efficient and robust alternative. Instead of growing viruses in chicken eggs, researchers inject virus strains into insect cells. Both the virus and the cells then grow and multiply quickly in bioreactors. Scientists break the cell walls and harvest a key protein, called hemagglutinin, produced by the virus. This protein, found on the influenza virus’s outer surface, is responsible for binding to cells in the body, causing a viral infection. Scientists purify and inactivate the harvested protein so that it can stimulate an immune response without causing an infection. The protein is the main ingredient in a vaccine.

Protein Sciences’ technology, which is twice as fast as the egg-based approach, is a slight variation on the conventional cell-based approach. Instead of growing live viruses, the company replicates viral DNA within cells. The genes for hemagglutinin are extracted from a dead flu virus and injected into baculovirus–a virus that infects a caterpillar called the armyworm. The baculovirus is then injected into ovary cells isolated from the armyworm. In a bioreactor, the virus eats away at cells, replicating DNA and producing hemagglutinin.

3 comments. Share your thoughts »

Credit: Protein Sciences

Tagged: Biomedicine, vaccine, cells, H1N1, swine flu, flu vaccine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me