Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Nuzzo’s group used the techniques to make functioning microscopic spherical solar cells, as a proof of the functionality of what he calls “materials origami.” Before cutting the silicon into the petal shape, the team treated it to form the conductive regions that make a solar cell work. After the flower had folded up into a sphere, electrical contacts were added. The group used a similar technique to make cylindrical micro-solar cells as well.

These devices convert only about 1 percent of the light that hits them into electricity–a poor return for a solar cell–but this is better than a planar solar cell made using the same relatively crude techniques using the same amount of silicon. The researchers say the technique can be applied to other materials besides silicon, and could be used to make new forms of solar cells. The work is described online this week in the Proceedings of the National Academy of Sciences.

“Folding is very appealing because you can make fantastic, complicated three-dimensional shapes,” says George Barbastathis, professor of mechanical engineering at MIT.

There are other ways of improving solar cells’ ability to capture light, such as antireflective coatings and surface texturing. The main advantage of the new approach is that it requires less material, says Nuzzo. Planar solar cells just a few micrometers thick can’t be textured–there’s simply not enough material. And antireflective coatings add more manufacturing costs and complexity. Self-assembly, Nuzzo hopes, could offer an alternative.

The Illinois group will now work to improve the process, and make designs that further improve the cells’ light management. “We want to bring forward form factors that rely on high performance materials like silicon but provide a substantial economy” by using as little of these expensive materials as possible, says Nuzzo.

Gain the insight you need on energy at EmTech MIT.

Register today

0 comments about this story. Start the discussion »

Credit: PNAS

Tagged: Biomedicine, Materials, energy, materials, silicon, solar cells, self-assembly

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me