Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers at IBM have demonstrated a novel “lab on a chip” that uses capillary action to create a potential one-step diagnostic tool, and which could ultimately test for a wide range of diseases and viruses.

The chip requires only a small drop of blood, which it draws through tiny channels within the device. The blood reacts with different disease markers to provide accurate diagnoses in about 15 minutes, says Emmanuel Delamarche, who codeveloped the device at IBM Zurich Research Laboratory in Switzerland.

A nice thing about the new chip is that it involves no moving parts, says IBM’s Luc Gervais, who is also a researcher at the University Hospital Basel. Instead, it works using capillary action to filter blood and pump serum through its various chambers.

IBM is an important player in the field of microfluidics, says Jikui Luo, a microfluidics expert at the UK-based Centre for Materials Research and Innovation at the University of Bolton. However capillary driven microfluidic devices are nothing new, he says. “There is a trend toward this sort of moving-part-free device.” With no mechanical parts or membranes to pump the fluid, such devices are potentially more reliable, says Luo.

Within its new device, the IBM team has engineered capillary-driven pumps and valves to precisely control the fluid flowing through it. Consumer pregnancy tests use a similar yet simpler approach, says Gervais. But the IBM chip has the potential to test for multiple diseases simultaneously and can give a quantitative response, rather than a simple yes or no, he says. “If a patient has just had a heart attack, a yes or no test is not going to help determine the best course of action,” says Gervais. “This [IBM chip] pushes point-of-care diagnostics to the next level.”

In their prototype, the IBM researchers created a network of channels, some as narrow as 30 micrometers, with various detection and reaction chambers. As the filtered serum passes through these sections, antibodies embedded within the walls of the channel bind to any disease markers present in the blood. In the case of the prototype, the researchers used a marker commonly used for detecting inflammation and for assessing myocardial damage following heart attacks.

1 comment. Share your thoughts »

Credits: IBM Zurich Research Labs

Tagged: Biomedicine, diagnostics, microfluidics, biomarkers, antibody, lab on a chip

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me