Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Drugs that boost the chemical messenger norepinephrine in the brain have been shown to alleviate cognitive problems in mice engineered to mirror Down syndrome. The findings, published today in the journal Science Translational Medicine, suggest a new approach to treating the disorder. Several existing drugs can boost the chemical or mimic its effects, though none have yet been tested in patients with Down syndrome.

The research also reflects a growing understanding of the brain systems that underlie the cognitive problems in people with Down syndrome, and better methods of developing potential treatments.

Down syndrome, which affects 5,000 infants in the United States each year, results from a duplication of a segment of chromosome 21. People with the disorder have lower than normal cognitive abilities and almost all develop signs of Alzheimer’s disease by middle age. Although no treatments for the cognitive deficits of Down syndrome exist currently, recent research in animal models of the disorder has unearthed a handful of candidates.

“This is one of several potential approaches identified in the last couple of years that suggest that small molecules, or even approved drugs, can be used to have a positive impact on cognitive function in Down syndrome,” says Roger Reeves, a scientist at the Johns Hopkins University School of Medicine in Baltimore, who was not involved in the new study.

At the heart of this research is a strain of mice with a duplication of a segment of chromosome 16 that mimics the genetics of the human disorder–the region contains more than 100 genes analogous to those affected by the duplication of human chromosome 21, and the animals show some of the same brain abnormalities. For example, the mice have major deficits in the hippocampus, a brain area vital for learning and memory. These facets are also impaired in humans with Down syndrome.

The new findings help identify neurological impairments caused by Down syndrome, and show that drug treatments can help alleviate the effects of these impairments. According to the research, the animals have signs of serious degeneration in a part of the brain called the locus coeruleus, which supplies the chemical messenger norepinephrine to the hippocampus. Norepinephrine is believed to help the hippocampus integrate different information, such as navigational and sensory input, says Ahmad Salehi, a scientist at Stanford and lead author on the paper.

The modified mice have problems with memory tasks that require this type of integration. For instance, the researchers taught both normal and engineered mice to fear a particular tone by pairing it with an electrical shock. Both mice froze when they heard the tone but normal mice also froze when placed in the box that they learned to associate with the tone and the shock, a phenomenon called contextual learning. Mutant mice failed this test, and children with Down syndrome have a similar deficit, says Salehi. “If you ask a kid [with Down syndrome] to enter a room from one door and find a toy, based on a cue like color, they can find it,” he says. “But if you change the door they enter, and don’t give them a cue, it takes them much longer to find the toy.”

Salehi and collaborators found that these problems could be reversed in mice by giving them a drug, l-threo-dihydroxyphenylserine (l-DOPS), which is converted into norepinephrine in the brain. Within a matter of hours, “there was no difference [in performance] between normal and [genetically engineered] mice after the treatment,” says Salehi. The effects wore off as norepinephrine levels declined.

0 comments about this story. Start the discussion »

Credit: National Human Genome Research Institute

Tagged: Biomedicine, Alzheimer's, Down Syndrome, chromosomes

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me