Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

When a person suffers a stroke, the interruption of blood flow to the brain can cause lasting loss of function in the limbs. Persistent physical therapy can improve motor control by strengthening connections between the limb and brain. Now, a group at Northeastern University has developed several portable robotic devices that may aid in the rehabilitation process; unlike other rehabilitation devices, these may also let patients continue therapy at home.

Stroke is the leading cause of disability in the United States; over two-thirds of stroke survivors are left with a disability, according to the National Stroke Association. Repetitive physical therapy that applies force to an affected limb can encourage motor signals to reach the brain and build new pathways of control. These exercises can help not just people recovering from a stroke, but also those suffering from other conditions, such as cerebral palsy or degenerative muscle diseases.

“It’s well understood that the more you do it, the better you get,” says Tariq Rahman, director of the Center for Orthopedic Research and Development at the Nemours Foundation and an associate professor at Drexel University.

Traditionally, physical therapists apply force to a limb manually: A group of therapists, for example, will help a patient walk on a treadmill by moving the legs and steadying the patient. In the last few decades, many researchers have looked to robotics for devices that provide forces to a patient’s legs, arms, hands, or pelvis. Researchers hope that such devices will create smoother motion, react more precisely to patient improvements, measure progress more exactly, and make for a more comfortable, effective recovery. Several rehabilitation devices currently in use, such as Rocomo’s Lokomat machine or the University of Twente’s Lopes, were designed to help people walk better–but these systems tend to be bulky and expensive.

The Northeastern researchers have developed devices for the knee, wrist, pelvis, and ankle that they say are portable and cheap enough to be rented by small rehabilitation or medical centers, and potentially even individual patients. The team kept the devices small by using a substance called electro-rheological fluid, which becomes stickier when an electric current is applied, thus creating a stronger resistive force in the device. The fluid contains particles that form chains when electricity is applied, turning the liquid into more of a gel in a few milliseconds.

“With this fluid, we are able to reduce the size of the mechanical components, like the brake,” says Constantinos Mavroidis, professor and director of the Biomedical Mechatronics Laboratory at Northeastern. The group also says it’s reduced the motor size by at least half compared to typical motors. In addition to the smaller size and reduced weight, the fluid-based motors also give a smoother motion, says Mavroidis. “You have the feeling that it’s not really a mechanical device but a soft spring.”

Rahman says that the Northeastern work looks promising. “We’re always looking to make [devices] cheaper, lighter, smaller, and invisible. This is all in the right direction,” says Rahman, who develops robotic rehabilitation devices for children with muscular disorders at the Alfred DuPont Children’s Hospital. Most of the rehab devices Rahman sees are large and unwieldy and thus impractical for patients to use in the home.

1 comment. Share your thoughts »

Credits: Biomedical Mechatronics Laboratory, Northeastern University
Video by Biomedical Mechatronics Laboratory, Northeastern University

Tagged: Computing, robotics, stroke, rehabilitation

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me