Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Power shifting: Power comes into the Tres Amigas station from three power grids and circulates inside a superconductor pipeline that all three grids can draw from.

To connect all three grids required a place where they were geographically close together–in the case of Tres Amigas, a 60-square-kilometer swath of land near Clovis, NM. As with conventional connections between the grids, the system converts AC to DC. But unlike conventional two-way connections, at Tres Amigas that DC power will then circulate in superconducting cables that form a triangular electrical pipeline. Any of the three grids can draw power from this, as needed.

Providing five gigawatts, and eventually 30 gigawatts, of transfer capacity between all three grids required the use of superconducting DC lines, which greatly reduced the number of cables needed to carry the power–a single superconducting cable can carry the same power as nine or 10 sets of conventional copper cables. If the conventional cables were suspended overhead, they, along with the incoming and outgoing transmission lines, would have created a “rat’s nest” vulnerable to weather and sabotage, says Jack McCall, a director of business development at Devens, MA-based American Superconductor, which is supplying the superconducting cables.

Burying conventional cables would add to the complexity and size of the project, since the cables would need to be kept several meters apart to avoid overheating. At first, only one superconducting cable would be needed–greatly simplifying the system compared to using conventional cables. As Tres Amigas is expanded, more cables will be needed, but these can be buried close to each other.

In addition to connecting the three grids Tres Amigas will serve as a demonstration of the type of DC superconducting lines and AC-to-DC converters that would be needed for high-power, long distance transmission lines–the superconductor “pipeline” EPRI has studied. Such a system could be easier to site than conventional overhead high-power transmission lines: the superconducting cables can be buried along existing rights of way, such as along interstate highways. Convincing land owners to allow large overhead transmission towers is one of the biggest obstacles to installing conventional transmission lines, and it could stymie efforts to develop a system for distributing wind power from the Midwest. Superconducting transmission lines could also be easier to integrate with the existing grid, since the amount of power converted from DC to AC power at stations along the line could be precisely controlled.

According to the EPRI analysis, a superconductor pipeline would cost about as much as a conventional transmission line, if the superconductor system were designed to transmit high amounts of power (greater than five gigawatts) over long distances (around 1,000 miles). This is in part because the cost for refrigerating superconducting lines (required to maintain their superconducting properties) becomes a small share of the total system costs. Also, at long distances, the higher efficiency of superconducting systems is important–about half as much energy is wasted as with conventional high-power, long-distance power lines.

But it is a technology that companies aren’t familiar with, and so they may be reluctant to roll it out at the scale required for it to be cost-competitive, Eckroad says. The Tres Amigas project could be important to demonstrating that the technology works, he says.

McCall says that Tres Amigas plans to file with the Federal Energy Regulatory Commission in the coming weeks–clearing that regulatory hurdle is the next step for the company. If that goes well, the initial five-gigawatt system could be completed by the end of 2014.

26 comments. Share your thoughts »

Credits: American Superconductor, Tres Amigas

Tagged: Energy, energy, renewable energy, solar power, battery, wind power, electric grid, American Superconductor, superconductor

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me