Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A start-up based in Menlo Park, CA, plans to sell a new type of anode for lithium-ion batteries that, the company says, will let electric vehicles travel farther and mobile devices last longer without a recharge. Amprius’ lithium-ion anodes are made of silicon nanowires, which can store 10 times more charge than graphite, the material used for today’s lithium-ion battery anodes. According to the company, electric vehicles that run 200 miles between charges could go 380 miles on its batteries, and laptops that have four hours of run time could last for seven hours between charges.

While other advanced battery companies are focused on power, which makes for fast charging and zippy acceleration, Amprius is trying to improve energy density, which enables longer run times. The more total energy a battery can store, the longer it can power a car or a phone between charges. As vehicle manufacturers look toward electric cars, and as mobile devices like iPhones run more energy-intensive applications, a battery’s energy density, and thus the time it can go without a recharge, becomes a more pressing issue.

When lithium-ion batteries are charged, lithium ions move from the cathode to the anode, while electrons flow in through an external electrical circuit; the process is reversed during discharge. Silicon has shown promise as an anode material because it can take up much more lithium than the carbon materials now used. Indeed, the theoretical maximum energy density of silicon is 10 times greater than carbon’s. But silicon is fragile and tends to swell and crack after just one charge cycle.

However, battery anodes made from silicon nanowires can be cycled over and over again without damage. This fall, Yi Cui, Amprius founder and assistant professor of materials science and engineering at Stanford, demonstrated nanostructured silicon anodes that meet silicon’s theoretical charge storage capacity without breaking. Mats of long, thin nanowires are pliable, which relieves the strain when the battery is charged and discharged. And collections of nanowires have a very high surface area, which means more sites for interacting with lithium.

2 comments. Share your thoughts »

Credit: Amprius

Tagged: Energy, Materials, renewable energy, batteries, silicon, nanowire, energy storage

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »