Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“The question is, can you absorb all the light using a small amount of materials?” says Yi Cui, assistant professor of materials science at Stanford University. Building a nanostructured cell on an optical fiber provides a way to do this by increasing both the surface area covered by the dye and the effective path length of the light, he says. The longer a photon travels through a solar cell, the more opportunities it has to interact and generate an electron.

One potential stumbling block for fiber cells is getting enough light inside them in the first place. Wang’s devices only collect light at their tips, so to get enough light into such a solar cell without having to track the sun, smaller fibers might be bundled together. Cui says the tips of the fibers could be made of materials that are very effective at directing light into the fiber. Another way to overcome this problem is to build fiber cells that can absorb light along their entire length, not just at the tips–which Michigan’s Shtein is working on. This is tricky, because it means the cells’ coatings need to be both electrically conductive and transparent, an unusual combination.

However, Shtein says that fibers that absorb light from the sides offer “an interesting architecture for light capture, because you can distribute the fibers in space in a way that helps you capture more photons more effectively than you can in a planar device.” The shallower the angle at which light hits a planar cell, the more light reflects off its surface. But the light reflecting off the curved surface of a fiber at a shallow angle will hit an adjacent fiber. These cells could be designed so that it’s not necessary to install them with sun-tracking systems, and they would work on cloudy days when the light is diffuse, Shtein says.

Wang says the next step is to try different materials. So far, he has built the cells on quartz optical fibers, which are relatively expensive. Next he plans to try making the cells using cheaper polymer fibers.

2 comments. Share your thoughts »

Credit: Angewandte Chemie

Tagged: Energy, energy, nanotechnology, solar cells, optics, nanowire, optical fibers, dye-sensitized solar

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me