Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Using organic semiconductor materials instead of rigid silicon, it’s possible to make energy-efficient, lightweight, and flexible solar cells and computer displays. But making devices out of organic materials requires investing in completely new equipment, since organic materials are normally destroyed by the harsh chemicals necessary for conventional photolithography.

Now Orthogonal, a company based in Ithaca, NY, is developing materials that will allow organic electronics to be manufactured on the equipment used to make silicon electronics. This should also make it possible to build more-complex organic components. The company has demonstrated four prototype devices, including organic light-emitting diodes, made using new photolithography chemicals that are compatible with organic materials.

Transistors and display pixels that are made from organic materials such as polymers are slower than those made of silicon, but they also require less energy to operate, weigh less, and can be made on flexible backings, making them attractive for use in displays and solar panels. But manufacturing them requires new equipment such as industrial ink-jet printers. “It’s definitely an issue for organic light-emitting diodes and other organic electronics that a lot of the equipment is handmade,” says Paul Semenza, senior vice president at DisplaySearch, a market research company. For manufacturers, buying entirely new equipment is a major expense. “If you could use photolithography to make these devices, potentially you could break that bottleneck,” he says.

Photolithography is the standard method for making silicon electronics, but it is normally incompatible with organic materials because it requires harsh chemicals that cause them to break down. To pattern a surface such as a silicon wafer, the surface must first be coated with a light-sensitive chemical called a photoresist. Light is then shined onto the surface through a patterned mask, and solvent is applied to etch away the exposed areas of the photoresist, leaving behind a pattern.

Orthogonal has licensed a photolithography technique developed by researchers at Cornell University that’s compatible with organic materials. The technique, called orthogonal lithography, was invented by Christopher Ober and George Malliaras, both professors of materials science and engineering at Cornell. Both the photoresist and the solvent that carries it away during the etching process are made from an unusual class of molecules called hydrofluoroethers–compounds that interact with each other but not with semiconducting organic materials. So the solvent and photoresist the Cornell researchers developed won’t degrade the semiconducting layers during the lithography process.

Orthogonal hopes to sell chemicals for making organic electronics using conventional photolithography to companies that make displays and other devices. The company is already working with several display and solar manufacturers to develop products using the manufacturing method.

“Instead of building new plants and developing new processes, we want to enable manufacturers to use equipment and knowledge around a process that already exists,” says Fox Holt, CEO of Orthogonal.

2 comments. Share your thoughts »

Credit: Orthogonal

Tagged: Business, Materials, materials, startups, displays, flexible electronics, organic electronics, photolithography

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me