Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Tiny optical devices that can grab small particles out of a liquid, using the force of photons, could make it possible to image and identify disease cells on a chip without the need for microscopes. The new types of optical traps, developed by physicists at Harvard University, are designed to be integrated with microfluidic devices, some of which are currently in clinical trials for diagnosing cancer and monitoring patient response to therapies. The Harvard researchers have shown that their optical traps can do on a chip what conventionally requires a large microscope and a powerful laser.

Optical traps, a technology developed in the 1980s, usually cost tens of thousands of dollars and require powerful lasers and microscopes to focus the light onto particles as small as single atoms. Photons have no mass, but they do have momentum, and transferring this momentum to an atom, a molecule, or a cell enables physicists to control the particle’s movement, holding it absolutely still for observation, or pulling on it to monitor its response. Since their invention, optical traps have been used to make many basic science advances. But the Harvard group, led by associate professor of electrical engineering Kenneth Crozier, hopes to use optical traps in diagnostic devices, making them cheap and small enough to be practical in medicine.

The optical traps developed by Crozier with Harvard researchers Ethan Schonbrun and Kai Wang can trap particles just as strongly as more complex systems. Crozier says that the compact traps could be integrated into microfluidics and used to sort and image disease cells in the blood, for example. Microfluidic chips shuttle cells around in a fluid and typically control their movements using physical barriers and variations in pressure and voltage. Crozier’s optical traps could gently pull cells down to the surface of a chip for observation and then be used to sort the cells based on their identity. The group presented their advances at the annual conference of the Optical Society of America this month in San Jose, CA.

Using manufacturing techniques common to the semiconducting industry, the Harvard researchers patterned chips with two different designs. One is a silicon chip patterned with a ring with a radius of five micrometers. When illuminated by a laser, light resonates around the ring, generating an optical force that can pull particles from liquid flowing above the chip. Another is a chip patterned with arrays of 64 bullseye patterns. Each of these can, when illuminated, trap a flowing particle. What’s more, these patterns focus light in a way that’s very similar to a microscope. “Each has the function of a confocal microscope and could be used to get a 3-D picture of a cell,” says Crozier.

5 comments. Share your thoughts »

Credits: Kenneth Crozier, Harvard University
Video by Conrad Warre, edited by Brittany Sauser

Tagged: Biomedicine, Materials, diagnostics, lasers, microfluidics, silicon photonics, biophysics

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me