Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

UCSF will perform separate procedures on the samples to determine the length of telomeres–sections of DNA at the ends of chromosomes that protect against damage. The length of telomeres is associated with cell division and aging. One of the coinvestigators on the project is Elizabeth Blackburn, a biologist at UCSF who shared the 2009 Nobel Prize in Medicine for her work on telomeres.

Other so-called biobanks may be larger–for example, the U.K. Biobank is in the process of collecting samples from 500,000 people. But in that effort, the actual genetic analysis won’t be done until researchers design studies of various subcategories of patients and perform the genetic analyses on the relevant subset.

Many other institutions are assembling smaller biobanks and genetic-information databases. The Mayo Clinic, for example, this year launched an effort to build its own biobank of genetic information collected from 20,000 patients for purposes of general genomic and clinical research. It is also amassing smaller banks focusing on specific diseases, including bipolar disorder, a spokesman said yesterday.

John Glaser, vice president and chief information officer at Partners Healthcare in Boston, says the Kaiser Permanente platform will make it far easier to conduct research. “The payoffs could be very significant reductions in the costs and time–something on the order of a factor of five–to detect problematic medications and other medical interventions, assess the comparative effectiveness of treatments, and conduct clinical research,” he says.

Glaser adds that the long-term vision is to connect the various genetic databases to amplify their benefits. “One can imagine dozens of databases that are linked that have technical and governance means to conduct parallel analyses,” Glaser says. But, he notes, “there are challenges to making this happen that have only begun to be explored.”

Kaiser Permanente is meanwhile trying to expand its collection of biological samples to 500,000 by 2013.

1 comment. Share your thoughts »

Credit: Kaiser Permanente

Tagged: Computing, Biomedicine, genome, genetic testing, genetic analysis, gene expression, health-care systems, genetic analyses

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me