Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Municipal transit agencies have tried to reduce the carbon footprint of their bus fleets using a range of options over the years, from biofuels and hydrogen to batteries and hybrid-electric diesel. Now a Chinese company and its U.S. partner say that ultracapacitors could offer the greenest and most economical way of powering inner-city buses.

There’s just one catch: the best ultracapacitors can only store about 5 percent of the energy that lithium-ion batteries hold, limiting them to a couple of miles per charge. This makes them ineffective as an energy storage medium for passenger vehicles. But what ultracapacitors lack in range they make up in their ability to rapidly charge and discharge. So in vehicles that have to stop frequently and predictably as part of normal operation, energy storage based exclusively on ultracapacitors begins to make sense.

Sinautec Automobile Technologies, based in Arlington, VA, and its Chinese partner, Shanghai Aowei Technology Development Company, have spent the past three years demonstrating the approach with 17 forty-one seat municipal buses on the outskirts of Shanghai. On October 21, the two companies will offer a one-day demonstration at American University in Washington, DC, where an 11-seat minibus running on ultracapacitors will spend the day shuttling people around campus.

The trick is to turn some bus stops along the route into charge stations, says Dan Ye, executive director of Sinautec. Unlike a conventional trolley bus that has to continually touch an overhead power line, Sinautec’s ultracapacitor buses take big sips of electricity every two or three miles at designated charging stations, which double as bus stops. When at these stations, a collector on the top of the bus rises a few feet and touches an overhead charging line. Within a couple of minutes, the ultracapacitor banks stored under the bus seats are fully charged.

“It’s a brilliant concept,” says ultracapacitor expert Joel Schindall, professor of electrical engineering and computer science at MIT. “It’s not well suited for electric-only cars, but it is practical to stop a bus every few city blocks.”

The buses can also capture energy from braking, and the company says that recharging stations can be equipped with solar panels (although this is mainly to further the perception that the vehicles have a lower carbon footprint). Ye says the buses use 40 percent less electricity compared to an electric trolley bus, mainly because they’re lighter and have the regenerative braking benefits. They’re also competitive with conventional buses based on fuel savings over the vehicle’s 12-year life, based on current oil and electricity prices. Sinautec estimates that one of its buses has one-tenth the energy cost of a diesel bus and can achieve lifetime fuel savings of $200,000.

“The ultracapacitor bus is also cheaper than lithium-ion battery buses,” says Ye. “We used the Olympics (lithium-ion) bus as a model and found ours about 40 percent less expensive with a far superior reliability rating.” Ye adds that the environmental benefits are compelling. “Even if you use the dirtiest coal plant on the planet, it generates a third of the carbon dioxide of diesel when used to charge an ultracapacitor.”

23 comments. Share your thoughts »

Credit: Sinautec Automobile Technologies

Tagged: Energy, renewable energy, battery, transportation, ultracapacitors, fuel, carbon dioxide emissions, lithium-ion batteries, renewable fuel

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me