Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Using a technology previously developed by Chien’s collaborator, Kevin “Kit” Parker, a bioengineer at Harvard, researchers then grew the cells on a thin polymer film that had been patterned with molecules typically found outside of cells, such as collagen. “The cells recognize the geometric cues on the film and reorganize themselves to spontaneously form a piece of cardiac tissue,” says Parker. The cells can contract, and they express the same genes as those expressed by normal heart muscle. (See a video of the muscle cells contracting.) “We can use them to test new drugs, as well as the safety of different drugs, chemicals, and nanomaterials,” says Parker. “We can also graft them onto the heart and restore contractility of that injured region of the heart.”

The researchers still have several steps to surmount before they can test how well the patches will repair the heart. They must find ways to isolate human versions of these cells. To make patches that are therapeutically useful, they must create three-dimensional versions of the two-dimensional patches of muscle cells. That will require the addition of blood vessels to feed the muscle. “We are working on additional technology to template in a vascular system within the cardiac tissue,” says Parker. “Once we’re comfortable with that, we will take it into animals.”

Ultimately, scientists would like to generate these heart-muscle-producing cells from induced pluripotent stem cells, a type of adult stem cell that can be made from a patient’s skin cell. This would allow physicians to take a skin biopsy from a heart-attack patient, generate a heart patch that is genetically matched to the patient, and implant it over the damaged heart tissue.

0 comments about this story. Start the discussion »

Credit: Ibrahim Domian, Murali Chiravuri, and Kenneth Chien
Video by Ibrahim Domian, Peter van der Meer, Adam Feinberg, Kevin “Kit” Parker, and Kenneth Chien

Tagged: Biomedicine, stem cells, regenerative medicine, regeneration, heart attack, heart damage, heart muscle, cardiology

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me