Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In the hope of helping oncologists remove every piece of tumor tissue during surgery, researchers are developing new imaging tools that work in real time in the operating room. European researchers have now demonstrated that a chemical analysis instrument called a mass spectrometer can be coupled with an electroscalpel to create a molecular profile of tissue during surgery. The researchers have shown that the method can be used to map out different tissue types and distinguish cancerous tissue. The device will begin clinical trials next month.

“When a surgeon is performing cancer surgery, he doesn’t have any direct information on where the tumor is,” says Zoltán Takáts, a professor at Justus-Liebig University in Giessen, Germany. Instead, surgeons rely on preoperative imaging scans and on feedback from pathologists examining tissue biopsies under a microscope. “We want to provide a tool that’s right in their hands, so that if they think a structure looks suspicious, they can just test it,” says Takáts.

Mass spectrometry, a very precise method for identifying molecules by analyzing the ratio between their mass and charge, is already being used by a handful of research groups to study biological samples. Researchers have known for many years that tumor tissue and healthy tissue have different molecular profiles and that this can be used to tell them apart, or even to determine how aggressive a particular tumor is. Other research groups have used mass spectrometry to analyze biopsied tissue and have shown that it can make these differentiations. The problem with using mass spectrometry in the operating room is sample collection. Before molecules can be analyzed, they have to be ionized and sucked up into the machine. Creating ions requires bombarding a sample with a stream of charged particles, often a gas, and these methods aren’t suitable for the operating room. “A high-voltage nitrogen jet is not compatible with the human body,” says Takáts.

Takáts realized that some surgical cutting tools, including electroscalpels, produce gaseous ions as a kind of waste product that are suitable for analysis with mass spectrometry. And these fumes, often called “surgical smoke,” are already collected during surgery because they’re harmful to the lungs. Takáts and his collaborators found that mass spectrometry of surgical smoke can be used to make a molecular map of a tumor. After the fumes are sucked into the mass spectrometer, the chemicals in the sample are identified and checked against a database to give the surgeon a readout. Gathering and analyzing a chemical sample takes a few hundred milliseconds. “We can draw a map and say this part is healthy liver, that is connective tissue, this is adipose tissue, that is cancer,” says Takáts.

2 comments. Share your thoughts »

Credit: Zoltán Takáts

Tagged: Biomedicine, cancer, personalized medicine, medical imaging, molecular imaging, mass spectrometry, surgeries

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me