Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

DNA detector: A new ultrafast DNA sensor contains hairpin-shaped DNA strands attached to a gold film. The DNA unfolds when it captures the target gene sequence, and an attached fluorescent molecule glows.

In the other nanosensors being developed for ultrasensitive, rapid DNA detection, researchers are using carbon nanotubes, nanowires, and nanoparticles. All of these approaches promise high accuracy, portability, and low cost. “If you could make a portable device that would sit in your doctor’s office, then, using a small amount of fluid, your doctor could screen you for a genetic abnormality,” says Michael Strano, a chemical engineering professor at MIT who has made nanotube sensors that detect DNA electrically.

Nanosphere in Northbrook, IL, which makes a DNA nanosensor based on research by Northwestern University chemistry professor Chad Mirkin, is far ahead of the game. The Food and Drug Administration has already approved the company’s sensors for certain genetic and infectious diseases, and additional versions are pending FDA approval or in clinical trials.

Nanosphere’s sensor is a microarray coated with DNA strands complementary to the target DNA and incorporated into a test cartridge. Gold nanoparticles, also coated with complementary DNA, are introduced, followed by target DNA, which binds to both the microarray and a nanoparticle. Then the nanoparticle is coated with silver to amplify the light that is scattered from the particle; the light is captured using a digital camera sensor. This method of detection is 100,000 times more sensitive than detecting fluorescence, says William Moffitt, CEO of Nanosphere.

Miller calls Nanosphere’s technology fantastic. However, he adds, Lighthouse Biosciences’s diagnostics test is simpler and requires fewer steps.

0 comments about this story. Start the discussion »

Credits: Benjamin Miller, University of Rochester Medical Center

Tagged: Biomedicine, DNA, diagnostics, carbon nanotubes, nanowires, infections, nanosensor

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me