Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

By disabling a gene involved in an important biochemical signaling pathway, scientists have discovered a way to mimic the well-known anti-aging benefits of caloric restriction, allowing mice to live longer and healthier lives. This finding, published online today in Science, offers a promising drug target for combating the many health problems associated with aging.

“This research points the way to potential pharmacological approaches to treating aging-related diseases in humans,” says senior author Dominic Withers, professor of diabetes and endocrinology at University College London.

“It really defines this as a pathway that’s affecting aging all the way from yeast to mammals, which I think is pretty striking,” says Matt Kaeberlein, professor of pathology at the University of Washington and coauthor of a commentary accompanying the new study.

Caloric restriction has long been known to extend lifespan and reduce the incidence of age-related diseases in a wide variety of organisms, from yeast and roundworms to rodents and primates. Exactly how a nutritionally complete but radically restricted diet achieves these benefits has remained unclear. But recently several studies have offered evidence that a particular signaling pathway, involving a protein called target of rapamycin (TOR), may play a pivotal role. This pathway acts as a sort of food sensor, helping to regulate the body’s metabolic response to nutrient availability.

Withers and colleagues noticed that young mice with a disabled version of the protein S6 kinase 1 (S6K1), which is directly activated by TOR, bore strong resemblance to calorie-restricted mice: they were leaner and had greater insulin sensitivity than normal mice. The researchers wondered whether these benefits would persist into middle and late age, and whether the mice would live longer.

To find out, they bred two large groups of “knockout” mice that lacked a functional version of the gene for S6K1. One group lived out their lives undisturbed, providing a measure of the group’s natural lifespan. The other group was put through extensive testing of cognitive and motor performance and metabolic health.

In female mice, the results were profound. Knockout females lived substantially longer than their normal counterparts. At 600 days–the mouse equivalent of human middle age–they excelled at motor performance tests, outdoing normal mice at tasks requiring balance, strength, and coordination. They were also more inquisitive and apt to explore new environments, suggesting improved cognitive function. Physiological measures also pointed to better health: the knockout mice had stronger bones, better insulin sensitivity, and more robust immune cells. While male knockout mice did not have extended lifespans, they did have the same array of health benefits as females.

5 comments. Share your thoughts »

Credit: George Thomas, University of Cincinnati

Tagged: Biomedicine, genetics, health, aging, longevity, life span

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me