Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The damage caused by carbon and sulfur buildup is another source of expense. “Nearly every hydrocarbon fuel that’s available today contains sulfur, and it’s very expensive to take it out,” says Michael Day, director of engineering at NexTech Materials, an Ohio company that’s developing sulfur-tolerant fuel-cell materials. Filtering impurities from the fuel before it’s fed into the cell adds as much as 4 percent to the cost of power generation.

One of the obstacles to improving fuel-cell tolerance has been that researchers are not sure yet what combinations of materials will lead to better performance. Liu stumbled on the poison-tolerant and coking-resistant material while trying to improve the conductivity of the anode. “One day when we tested the cell with a dirty fuel contaminated with hydrogen sulfide, we noticed that the performance didn’t change,” says Liu. “It has a remarkable tolerance to sulfur, from low levels up to 50 parts per million.” Sulfur in the fuel is oxidized and emitted as waste.

The new anode material is a composite of nickel and a ceramic that contains small amounts of two rare-earth metals. Other groups have developed sulfur- and coking-tolerant anodes, but these incorporated expensive materials and degraded cell performance. Replacing the nickel with copper improves a fuel cell’s tolerance, but copper isn’t as good a catalyst. Coating a conventional anode with ruthenium also prevents sulfur and carbon deposition, but this metal is extremely expensive. And all previously developed anodes, no matter how resistant to coking and poisoning, suffered a performance drop when switched to dirty fuels, says Liu. The Georgia Tech anode, he says, “gives the best performance.”

Liu is talking to companies about licensing the anode material. But before it can be brought to market, the new anode will have to be tested over longer periods of time in larger prototypes, he says.

8 comments. Share your thoughts »

Credit: Meilin Liu

Tagged: Energy, Materials, electricity, electrodes, fuel cells, ceramics, coal gasification

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me