Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The most efficient way to get electricity from hydrocarbon fuels such as natural gas or gasified coal is to oxidize them in a solid-oxide fuel cell. Unlike other fuel cells, solid-oxide cells can run on almost any fuel. But running them efficiently requires high temperatures, which raises prices. Now researchers at Georgia Tech have developed an anode material that resists the buildup of sulfur and carbon that can occur at lower temperatures. With further development, the material might be incorporated into cheaper solid-oxide fuel cells that run efficiently at lower temperatures.

Solid-oxide fuel cells generate an electrical current by pulling oxygen from the air and using it to oxidize fuel at temperatures up to about 1,000 °C. Oxygen comes in through the cathode, fuel enters through the anode, and the two react in the electrolyte to make water and carbon dioxide, which flow out of the cell as waste. Electrons freed during the reaction are pulled into an external circuit. Solid-oxide fuel cells are currently used for stationary applications such as powering building furnaces. They might also be used in power plants to generate electricity from gasified coal, an application the U.S. Department of Energy is pursuing though its Office of Fossil Energy.

The chemical reactions in solid-oxide cells are sped by a catalyst, usually nickel, in the anode. Nickel is cheaper than the platinum catalysts used in other fuel cells, and this cost savings is one of the advantages of solid-oxide fuel cells. But nickel is prone to contamination by sulfur in the fuel, and it can get covered in carbon residue, particularly at low temperatures. Both of these factors tend to clog the cell and reduce performance.

The new anode material, described today in the journal Science, resists sulfur poisoning and carbon coking, even when running at low temperatures, and without compromising performance. Developed by researchers led by Meilin Liu, professor of materials science and engineering and codirector of the Center for Innovative Fuel Cell and Battery Technologies at Georgia Tech, the material has so far been tested over a period of 1,000 hours at temperatures ranging from 500 °C to 700 °C.

Solid-oxide fuel cells on the market today operate at temperatures ranging from about 800 °C to 1,000 °C. In order for them to be more widely adopted, they need to run at lower temperatures, says J. Robert Selman, professor of chemical engineering at Illinois Institute of Technology. High operating temperatures mean using expensive materials to connect the fuel cells in a stack. “If you can run at lower temperatures, you have a greater choice of structural materials to work with,” says Selman. It’s cheaper to connect fuel cells in a stack using metal rather than ceramics, but metal interconnects lose their structural integrity at higher temperatures.

8 comments. Share your thoughts »

Credit: Meilin Liu

Tagged: Energy, Materials, electricity, electrodes, fuel cells, ceramics, coal gasification

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me