Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

In a new clinical trial for prostate cancer, scientists will capture rare tumor cells circulating in patients’ blood, analyze them using a specialized microchip, and use the results to try to predict how well the patient will respond to a drug. The trial reflects a new phase of personalized medicine for cancer, enabled by microfluidics technologies that can isolate scarce cancer cells and detect very small changes in gene expression. Physicians ultimately hope these chips can become a routine part of clinical care for cancer. “We need to be able to profile the tumor at the time we are considering treatment,” says Howard Scher, chief of the Genitourinary Oncology Service at Memorial Sloan-Kettering Cancer Center, where the trial will take place.

The study will focus on men with a difficult to treat form of prostate cancer that has failed to respond to other therapies. Changes in gene expression might help determine whether a specific drug will be effective–for example, if a patient has high levels of a receptor for androgen hormones, a drug that inhibits signaling of that receptor is more likely to work well. “We want to know why they don’t respond to therapy and what therapies would be best for them,” says Martin Fleisher, chairman of the Department of Clinical Laboratories at Sloan. “We collect tumor cells from blood, and do a gene analysis to find out what genes are overexpressed and whether or not they would be candidates for certain types of targeted therapies that would beat down their cancer.”

The effectiveness of different cancer drugs can vary based on the molecular characteristics of the cancer, such as the presence of a certain hormone or genetic mutation. Physicians already do some molecular analysis of cancer tissue to select the best drug for a patient. Herceptin, for example, is used to treat breast cancer in women with a particular protein in their tumors. And lung cancer patients with a mutation in the gene for the epidermal growth factor receptor are more likely to respond to a drug called Iressa than patients without it. But these treatments are chosen based on analysis from tumor biopsies, which isn’t always possible.

3 comments. Share your thoughts »

Credit: Fluidigm

Tagged: Biomedicine, microfluidics, prostate cancer, Fluidigm

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me