Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new non-contact, 3-D fingerprinting system could make spotting the bad guys faster and easier, whether it’s at the border or the police precinct. By projecting patterns of light onto a finger and analyzing the image, researchers from the University of Kentucky are able to create a more accurate print than those made with ink or sensor plates. The researchers say the system is more efficient than traditional fingerprinting and significantly reduces the number of incorrect matches.

“Fingerprinting has been widely applied to identify criminals in forensic law enforcement and security applications,” says Yongchang Wang, a PhD candidate at the University of Kentucky, and lead author of a paper on the fingerprinting research. But traditional techniques, Wang says, don’t make it easy to gather accurate, detailed prints.

Even the modern approach, in which the subject’s finger is rolled over a glass plate for scanning, often requires several attempts per finger to get a usable print. The glass also must be cleaned after each scan. And capturing prints of all 10 fingers can take several minutes.

“The customs agent has a budget of 32 seconds per person. They need a way to get your fingerprints quickly,” says Mike Troy, chief executive officer of FlashScan3D, a company based in Richardson, TX, that was founded to commercialize the Kentucky system.

The device works by projecting a series of striped lines onto a finger, in a process called structured light illumination (SLI). A 1.4 megapixel camera automatically captures images of the lines as they wrap around the finger, at roughly 1,000 pixels per inch. That’s twice as much as the resolution required for a fingerprint in the FBI’s Automatic Fingerprint Identification System (AFIS). By analyzing the way each line rises and falls, the software builds a 3-D model of the surface of the finger in less than a second, with each ridge and valley in its proper place. And unlike existing fingerprinting devices, the SLI system isn’t hampered by oily skin or a dry environment.

Existing scanning systems, which capture a print in two dimensions, require the pressing or rolling of a finger onto a rigid plane. Because the skin is elastic, the print is distorted, Wang says, adding that the SLI system has no such contact or distortion. “So, even at the same resolution, the non-contact 3-D print will have a much better performance in matching than traditional 2-D,” he says.

According to Daniel Lau, associate professor of electrical engineering at Kentucky and Wang’s supervisor on the project, on a scale of 1 to 5, with 1 representing the highest quality image possible and 5 representing unusable quality, their SLI system scored 1.1519. In contrast, a popular commercial 2-D fingerprint scanner scored 1.7125. The difference is both statistically and practically significant, Lau says. “It translates into an improvement in matching performance.” Plans to significantly expand the FBI’s biometric database mean that it is even more important to make fast, accurate matches, he says.

3 comments. Share your thoughts »

Credits: University of Kentucky

Tagged: Computing, 3-D, forensics, fingerprint analysis

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me