Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Grab it: The robotic hand uses its embedded sensors to sense an object by touch; it then adjusts itself to get a good grip.

Dollar’s robotic hand consists of four fingers made out of a flexible, durable polymer. A single motor and spool tugs on the finger joints to open and close the hand. Each soft polymer finger contains embedded sensors, as detailed in the August 2009 online issue of Autonomous Robots. Dollar embedded two piezoelectric sensors–which report physical contact as a voltage response–into each of the four fingers through a molding process called shape deposition manufacturing (SDM). This process allows different materials to be deposited one layer at a time, so that sensors or other items can be set inside the material, which also protects those components.

“Traditional robot hand designs can be very complicated and comprise tens or hundreds of tiny parts that need to be painstakingly assembled,” says Andrew Ng, a 2008 TR35 winner and associate professor at Stanford University who works on household robots. “Dollar’s work gives robot designers a new and exciting way to build robot hands.” He adds that he is planning to apply the manufacturing technique to his own work.

“[Dollar’s] work is pushing forward on how we can have intelligent mechanics with low-level sensing and control,” says Kemp. “It will make things work better, without having to have a lot of sensing and computation. That’s exactly the type of thing we want right now, because we want robots in human environments.”

The system currently employs only one type of grasp–the “power” grip, which is useful for picking up some objects, such as a soda can, a ball, or a hammer. Next, Dollar hopes to add a “precision” grip, to enable the hand to pick up smaller objects, such as a pen.

Dollar’s former colleague Robert Howe will collaborate with Peter Allen, a professor at Columbia University, who has devised software to simplify robotic grasping, to improve the functionality of the hand. Dollar hopes the hand will eventually be used not just in robotics but also for prosthetics. Using “a stiff robotic hand to shake someone’s hand is a lot less human-like,” he says.

Gain the insight you need on robotics at EmTech MIT.

Register today

0 comments about this story. Start the discussion »

Credits: Leif Jentoft
Video by Leif Jentoft

Tagged: Computing, robotics, robots, sensors, robotic hand, grasping

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »