Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Michael Idelchik is vice president of advanced technologies at GE Research, one of the world’s largest corporate research organizations. He oversees a wide range of projects, including ones aimed at improving conventional energy sources–with better coal and gas turbines, for example–as well as projects involving renewable energy, primarily wind turbines. At the EmTech@MIT 2009 conference, Technology Review spoke to Idelchik about some of GE’s most daring long-term research efforts.

Technology Review: What is the riskiest, most early-stage research going on at GE Research?

Michael Idelchik: We’re an industrial research lab, so early-stage is relative. But we have a number of projects that take years to develop. I’ll give you a couple. Pulse detonation technology, or supersonic combustion. With this one, rather than burning fuel at constant pressure, you let the pressure rise, so basically you generate a shock wave; you’re releasing heat in a detonation. An existing turbine burns at constant pressure. With detonation, pressure is rising, and the total energy available for the turbine increases. We see the potential of 30 percent fuel-efficiency improvement. Of course realization, including all the hardware around this process, would reduce this.

TR: In reality, the efficiency improvement in a power plant would be lower than 30 percent. How much would the improvement actually be?

MI: I think it will be anywhere from 5 percent to 10 percent. That’s percentage points–say from 59 to 60 percent efficient to 65 percent efficient. We have other technology that will get us close [to that] but no other technology that can get so much at once. It’s very revolutionary technology.

TR: How will this technology be used?

MI: The first application will definitely be land-based–it will be power generation at a natural-gas power plant.

TR: You will be detonating the fuel over and over again, something like an internal combustion engine?

MI: Basically you detonate anywhere from 50 to 80 hertz. Then you have unsteady flow going into the turbine. So you need to rethink how your turbine works. You don’t have a steady flow anymore.

TR: What are some of the challenges, in terms of materials or that sort of thing, to making that work?

MI: You have to look at the mechanical stability, vibrational analysis. You have to protect the compressor; detonation happens in both directions, so you have to close one end. So controls and synchronization of the detonation chambers become a really big challenge as well. You have to absorb the energy from detonation and convert it to shaft horsepower. That has to be done very well, otherwise you can lose everything in the turbine. What blade design and nozzle design will allow you to extract the most horsepower?

TR: What advances in materials or computation make this thinkable now?

MI: The ability to do multiscale models and simulations–you have from nanoseconds all the way up to 20 to 30 milliseconds. Evolution of valve technology and materials to go with that. Understanding how to design a robust detonation tube, how to produce detonation consistently and operate within the load range of the turbine, from idle to max power.

12 comments. Share your thoughts »

Credit: GE Global Research
Video by Kevin Bullis, edited by Brittany Sauser

Tagged: Business, Energy, renewable energy, electricity, fuel, power plants, GE Global Research

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me