Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Intel has already made a name for itself in silicon photonics. In 2005, the company announced a silicon laser, an engineering feat that many thought was impossible due to the physical properties of silicon. And within a couple of years, the company’s engineers demonstrated other silicon-based optical devices, such as high-performing modulators for encoding data onto light, and high-performing detectors for capturing the light-encoded data. Other researchers and companies, including those at University of California at Santa Barbara, University of Southern California, and MIT joined the fledgling field of silicon photonics. In 2007, optical chipmaker Luxtera announced an optical cable called Blazar that contained some silicon-based chips and was designed to connect servers in data centers.

The first generation of Light Peak cables will use the same sort of $75 optical chips found in telecommunications devices. But Intel has employed some tricks to drive down cost by more than a factor of 10, says Victor Krutul, director of Intel’s optical I/O team. For one, the chips don’t need to transmit data over the distances of telecom devices. For another, they don’t need to last as long or withstand harsh conditions. Because telecom chips in consumer cables won’t need to last for decades or withstand heat and humidity, manufacturing standards can be relaxed and allow the chips to be made more inexpensively.

While cables may not seem a cutting-edge technology, says Alan Willner, professor of electrical engineering at the University of Southern California, it is the ideal early application for silicon photonics because the market is potentially huge. “Silicon-based cables provide high-bandwidth connections, and frankly, nowadays everything is high-bandwidth.” Willner adds that the devices inside the chips, such as lasers and detectors, may not be the highest-performing, but they don’t have to be. “What they do have to be is robust and cheap and manufacturable,” he says. “From a user’s point of view, all they see is a lighter, cheaper, and faster cable than what used to be. That’s a great thing.”

“We’re launching an optical technology for a mainstream platform,” says Mario Paniccia, director of Intel’s photonics technology lab. “We’re going to start at 10 gigabits per second and scale to 100 gigabits per second.” Paniccia was reluctant to forecast a timeframe for silicon photonics to be used in Light Peak, but in order to achieve the higher bandwidths, he says, silicon photonics will need to come into play.

Intel says it will be able to make Light Peak cables up to 100 meters long. And because new connective technologies, be they wireless or wired, require standards and industry collaboration, Intel is working to form partnerships with various companies. At the developer forum, Perlmutter announced that Sony is supportive of the technology, with more announcements planned.

12 comments. Share your thoughts »

Credit: Intel

Tagged: Computing, Intel, photons, optical fibers, data transmission

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me