Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

With a new purchase, GE is betting on an early-stage turbine technology that could make offshore wind farms cheaper to maintain. The acquisition of ScanWind, based in Trondheim, Norway, has also secured GE a foothold in the growing offshore wind energy market.

Instead of gearboxes, ScanWind uses a novel direct-drive generator technology in its 3.5-megawatt turbines. This makes the turbines more reliable, the company says, by cutting downtime and repair costs–an especially important consideration for turbines offshore, where it’s more expensive to send technicians for maintenance. ScanWind has been testing the turbines on the Norwegian coast since 2003.

GE, based in Fairfield, CT, is the world’s second-largest maker of wind turbines, with more than 12,000 turbines installed globally. But GE’s offshore wind energy portfolio has been minimal so far, and the company wants to expand its offshore offerings. By acquiring ScanWind, transferring its expertise and understanding of onshore wind, and adding technologies such as remote monitoring and sensing, GE hopes it can make a solid, cost-effective offshore wind product.

In conventional wind turbines, the blades spin a shaft that is connected through a gearbox to the generator. The gearbox converts the turning speed of the blades–15 to 20 rotations per minute for a large, one-megawatt turbine–into the faster 1,800 rotations per minute that the generator needs to generate electricity. “Wind turbines are very different than any other gearbox application,” says Sandy Butterfield, chief engineer of the wind program at the National Renewable Energy Laboratory in Golden, CO. “You’re going from a very low speed to a high speed.” Typically it’s the opposite.

The multiple wheels and bearings in a wind turbine gearbox suffer tremendous stress because of wind turbulence, and a small defect in any one component can bring the turbine to a halt. This makes the gearbox the most high-maintenance part of a turbine. Gearboxes in offshore turbines, which face higher wind speeds, are even more vulnerable than those in onshore turbines. Butterfield is leading a gearbox-reliability study with turbine makers to identify design weaknesses that could be avoided.

ScanWind’s turbine design gets rid of the gearbox completely. Instead, the rotor shaft is attached directly to the generator, which spins at the same speed as the blades.

In a turbine generator, magnets spin around a coil to produce current–the faster the magnets spin, the more current is induced in the coil. To make up for a direct drive generator’s slower spinning rate, the radius of rotation is increased, effectively increasing the speed with which the magnets move around the coil.

13 comments. Share your thoughts »

Credits: GE

Tagged: Energy, renewable energy, GE, wind power, wind turbines

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me