Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Augmented reality (AR), which involves superimposing virtual objects and information on top of the real world, may be coming to a phone near you. As mobile phones become packed with more sensors, better video capabilities, and faster processing power, many experts predict that AR will become increasingly common. But in a panel discussion today at EmTech@MIT in Cambridge, MA, panelists will admit that several obstacles still remain and that the “killer app” for augmented reality has yet to emerge.

Several AR apps have already been released for cell phones with positioning sensors. For example, PresseLite’s Metro Paris app and Acrossair’s Nearest Tube both provide iPhone users with augmented directions to nearby subway stops. AR apps are also available for phones powered by Google’s Android platform. Layar, developed by SPRXmobile, based in the Netherlands, overlays information from Twitter, Flickr, and Wikipedia on real-world locations, while Wikitude, from Austria-based Mobilizy, displays tourist information collected from Wikipedia. (See five new augmented reality apps.)

Some researchers believe that AR represents a fundamentally new way to organize and interact with information. “In the future, we see augmented reality as a component of any kind of digital media interaction,” says Mobilizy’s co-CEO, Alexander Igelsboeck, who will speak at the EmTech@MIT session.

This week Mobilizy released a new language for AR called Augmented Reality Mark-up Language (ARML). With ARML, Mobilizy hopes to make it easier for programmers to create location-based content for AR applications. The company envisions ARML as equivalent to HTML for the Web, and Igelsboeck emphasizes the importance of open content and standardization for AR to take off. “We want to open those standards to be available for developer communities that can create innovative applications around this augmented experience,” he says.

But many challenges still remain. For instance, the positioning technology currently available in cell phones falls short for sophisticated AR applications. The GPSs built into smart phones “were really not designed for AR,” says panelist Steven Feiner, a professor of computer science at Columbia University. “They were designed for simpler applications.”

Feiner, who has worked on AR for over a decade, notes that early examples of AR required wearing a computer backpack and using cumbersome head-mounted displays. “[But] the tracking that we used [in 2001] was much, much better,” he says.

Feiner is focusing on less-mainstream applications for AR–he has developed one program that shows levels of carbon monoxide in Manhattan (see image above), and another that shows virtual labels for engineers–for example, a floating tag that says, “Remove this bolt using a 1/4 inch socket wrench”. He adds that better object recognition and posture tracking, as well as a way to deal with direct sunlight, will help AR become more practical.

1 comment. Share your thoughts »

Credits: Ohan Oda and Steve Feiner, Columbia University, Sean White and Steve Feiner, Columbia University

Tagged: Computing, displays, augmented reality, location-based services, context-aware computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me