Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“Many times when a device fails, it’s because a circuit or capacitor burns out,” says Bielawski. “This is critical in situations where you can’t repair it – in satellites or submarines.” To address the problem, engineers currently build redundancy into a system. Self-healing circuits could make devices for remote applications more lightweight, more efficient, and cheaper, says Bielawski.

Mark Hersam, professor of materials science and engineering at Northwestern University in Evanston, IL, also sees potential for the materials to be used in batteries. “Lithium-ion battery failures can be catastrophic,” leading to explosive fires that happen when corrosion causes electrical short circuits, says Hersam. Last month, Hersam began a Department of Energy-sponsored collaboration with the University of Illinois researchers to develop self-healing materials for batteries. It should also be possible to select capsule polymers that respond to chemical changes such as corrosion, he says.

“Of course, you don’t want to weigh down a battery with extra stuff,” says Braun. The same holds for circuit boards. But Braun says it isn’t necessary to use large quantities of the capsules: “You could add the capsules in small quantities because these failures tend to occur at the same point in the structure every time.”

The researchers are currently developing ways to precisely position the spheres. Braun says the group has had a paper accepted describing the use of a technique called electrospraying to place the nanotube bubbles. The group is also working on more realistic tests for the capsules, including fracture studies in conductive materials.

0 comments about this story. Start the discussion »

Credit: J. Mat. Chem./RSC Publishing

Tagged: Computing, Materials, batteries, carbon nanotubes, chips, self-healing materials, circuit

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me