Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Dropping a cell phone or laptop can, of course, cause irreparable damage. Now researchers are developing a material that could let a circuit self-repair small but critical damage caused by such an impact.

Capsules, filled with conductive nanotubes, that rip open under mechanical stress could be placed on circuit boards in failure-prone areas. When stress causes a crack in the circuit, some of the capsules would also rupture and release nanotubes to bridge the break. The researchers, from the University of Illinois at Urbana-Champaign, are also working on capsule additives designed to heal failures in lithium-ion battery electrodes, to prevent the short-circuiting that can sometimes cause a fire.

Previous research into self-healing materials has mostly focused on restoring mechanical properties after a damaging event. The University of Illinois researchers have, for example, already made self-healing coatings that can repair scratches and prevent corrosion on boats or car chassis. Now the group has brought the same techniques to the problem of restoring electronic properties.

“We want to address common failures in cell phones and other portable electronics,” says Paul Braun, a professor of materials science and engineering at the University of Illinois who leads the research project with Jeffrey Moore, a professor of chemistry, materials science, and engineering. These failures may become an even bigger problem as flexible electronics, which are subject to much more mechanical stress, become widespread, says Braun.

To make their self-healing material, Braun and Moore encapsulated carbon nanotubes inside polymer spheres about 200 micrometers in diameter each. They selected carbon nanotubes because of their high electrical conductivity and because their elongated shape does a good job of lining up to bridge gaps.

In proof-of-concept studies, the researchers ripped the capsules apart and placed the resulting mixture between the tips of two electrical probes. The released nanotubes formed a bridge that completed the circuit between the two probes. Though the polymer itself isn’t conductive, this didn’t impede the flow of current – there was a net positive increase in conductivity after the rupture. Details of the experiments were published last week in Journal of Materials Chemistry.

“The restoration of electronic properties is fantastic,” says Christopher Bielawski, associate professor of chemistry at the University of Texas in Austin, who is also developing self-healing electronic materials.

0 comments about this story. Start the discussion »

Credit: J. Mat. Chem./RSC Publishing

Tagged: Computing, Materials, batteries, carbon nanotubes, chips, circuit, self-healing materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »