Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A project that will add solar power to a coal-fired power plant could reduce the amount of coal required to generate electricity and dramatically cut the cost of solar power.

The approach, announced by Abengoa Solar, based in Lakewood, CO, and Xcel Energy, Colorado’s largest electrical utility, would make it easier for utilities in sunny states like California to meet impending state renewable-energy requirements.

The project will involve building an array of parabolic mirrors designed to concentrate heat from the sun, and using that heat to help make the steam that drives the coal plant’s turbines and generators, making electricity. Such mirrors have been used for decades to generate electricity at stand-alone concentrated-solar power plants, also called solar-thermal plants, which are currently the cheapest source of solar power. But pairing the concentrating mirrors with a coal power plant offers a way to make this type of solar power even cheaper because a large part of the cost of a solar-thermal plant is the equipment for converting heat into electricity. The Abengoa Solar project will use existing boilers, turbines, generators, and so on, reducing this cost.

“The thing that’s attractive about this is you only have to buy the solar field portion of the plant, which is 50 to 60 percent of the cost of the plant,” says Hank Price, director of technology at Abengoa Solar. That could effectively make solar-thermal power about 30 to 50 percent cheaper, according to various estimates. That would equate to a range of about six to 12 cents per kilowatt-hour, which is competitive with many conventional sources of electricity. “It’s potentially the most cost-effective way to get significant solar power on the grid,” he says.

In the new project, because parabolic troughs don’t generate sufficiently high temperatures, the heat they produce won’t be fed directly into the turbines. Instead, it will be used to preheat water that will be fed into the coal plant’s boilers, where coal is burned to turn the water into steam. Ordinarily, this preheating is done by siphoning off some coal-generated steam. Under the new design, more of that steam can be directed to the turbine to generate electricity. The net effect is that less coal is used to generate a given amount of electricity, and the augmented system reduces carbon dioxide emissions as much as a stand-alone solar-thermal plant with the same size array, but at a much lower cost, says Craig Turchi, a senior engineer in the concentrated-solar power program at the National Renewable Energy Lab in Golden, CO.

22 comments. Share your thoughts »

Credit: Abengoa Solar

Tagged: Energy, carbon dioxide, coal, solar thermal, concentrated solar power

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me