Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new technique makes it possible to print flexible arrays of thin inorganic light-emitting diodes for displays and lighting. The new printing process is a hybrid between the methods currently used to make inorganic and organic LEDs, and it brings some of the advantages of each, combining the flexibility, thinness and ease of manufacturing organic polymers with the brightness and long-term stability of inorganic compounds. It could be used to make high-quality flexible displays and less expensive LED lighting systems.

Inorganic LEDs are bright and long lasting, but the expense of manufacturing them has led to them being used mainly in niche applications such as billboard-size displays for sports arenas. What’s more, the manufacturing process for making inorganic LED displays is complex, because each LED must be individually cut and placed, says John Rogers, a materials science professor in the Beckman Institute at the University of Illinois at Urbana-Champaign. So display manufacturers have turned to organic materials, which can be printed and are cheaper. While LED-based lighting systems are attractive because of their low energy consumption, they remain expensive. The new printing process, developed by Rogers and described today in the journal Science, could bring down the cost of inorganic LEDs because it would require less material and simpler manufacturing techniques.

Displays based on inorganic LEDs, says Nicholas Colaneri, director of the Flexible Display Center at Arizona State University in Tempe, “are not generally economical to make.” The manufacturing process involves sawing wafers of semiconducting materials such as gallium arsenide, picking and placing each piece individually using robotics, and adding electrical connections one at a time.

To make the hybrid LEDs, the Illinois researchers start by growing an inorganic semiconducting material on top of what Rogers calls a “sacrificial” layer. The group uses a chemical bath to etch out LEDs that are just 10 to 100 micrometers on each side. Each LED is then secured with polymer anchors on two of its four corners. The anchors hold the LED in place during a second chemical bath that undercuts the LED, removing the sacrificial layer. The LEDs, which are about 2.5 micrometers thick, can then be picked up on a soft stamp and printed onto a glass, plastic or rubber substrate covered in a polymer adhesive. “You can deliver thousands of LEDs in a single step,” says Rogers. “And because they’re so thin, they can be interconnected using the conventional processes” used for organic LEDs and liquid-crystal displays.

1 comment. Share your thoughts »

Credit: Science/AAAS

Tagged: Computing, Materials, displays, light, LED, printing, lighting, stretchable electronics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me