Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers at NASA and the Department of Energy recently tested key technologies for developing a nuclear fission reactor that could power a human outpost on the moon or Mars. The tests prove that the agencies could build a “safe, reliable, and efficient” system by 2020, the year NASA plans to return humans to the moon.

A fission reactor works by splitting atoms and releasing energy in the form of heat, which is converted into electricity. The idea for using nuclear power in space dates back to the late 1950s, when they were considered for providing propulsion through Project Orion. In the 1960s a series of compact, experimental space nuclear reactors were developed by NASA under the Systems Nuclear Auxiliary Power program. But public safety concerns and an international treaty banning nuclear weapons in space stopped development.

Now nuclear power is being considered for lunar and Mars missions because, unlike alternatives such as solar power, it can provide constant energy, a necessity for human life-support systems, recharging rovers, and mining for resources. Solar power systems would also require the use of energy storage devices like batteries or fuel cells, adding unwanted mass to the system. Solar power is further limited because the moon is dark for up to 14 days at a time and has deep craters that can obscure the sun. Mars is farther away from the sun than either the Earth or the moon, so less solar power can be harvested there.

The new nuclear power system is part of a NASA project started in 2006, called Fission Surface Power, that is examining small reactors designed for use on other planets. While nuclear power remains controversial, the researchers say that the reactor would be designed to be completely safe and would be buried a safe distance from the astronauts to shield them from any radiation it would generate.

The recent tests examined technologies that would see a nuclear reactor coupled with a Stirling engine capable of producing 40 kilowatts of energy–enough to power a future lunar or Mars outpost.

“We are not building a system that needs hundreds of gigawatts of power like those that produce electricity for our cities,” says Don Palac, the project manager at NASA Glenn Research Center in Cleveland, OH. The system needs to be cheap, safe, and robust and “our recent tests demonstrated that we can successfully build that,” says Palac.

To generate electricity, the researchers used a liquid metal to transfer the heat from the reactor to the Stirling engine, which uses gas pressure to convert heat into the energy needed to generate electricity. For the tests, the researchers used a non-nuclear heat source. The liquid metal was a sodium potassium mixture that has been used in the past to transfer heat from a reactor to a generator, says Palac, but this is the first time this mixture has been used with a Stirling engine.

“They are very efficient and robust, and we believe [it] can last for eight years unattended,” says Lee Mason, the principal investigator of the project at Glenn. The system performed better than expected, Palac says, generating 2.3 kilowatts of power at a steady pace.

17 comments. Share your thoughts »

Credits: NASA

Tagged: Energy, space, moon, Mars, space travel, nuclear energy, fission

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me