Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

After some initial testing of several compounds, the researchers focused on one drug called salinomycin. They compared it to the actions of a drug commonly given in breast cancer chemotherapy, paclitaxel (also known by its brand name, Taxol), in cultured cells and in mice. While paclitaxel treatment leads to a higher proportion of drug-resistant cancer stem cells, salinomycin had the opposite effect, reducing the number of breast cancer stem cells in cultured cells more than 100 times more effectively than paclitaxel. The drug also reduced breast tumor growth in mice, although the reduction was less dramatic.

Gupta says that it’s not clear whether salinomycin will be a clinically useful drug, because it has not yet been tested in humans. The team is continuing to study this initial candidate drug, but he also notes, “we’re following up on several others that we think may be promising.”

Jeffrey Rosen, a breast cancer researcher at Baylor College of Medicine, in Houston, TX, says that the study is an early example of a promising new turn in the hunt for cancer therapies. “It’s very exciting that some groups are starting not to view tumors as homogeneous entities but to target subpopulations of cells we think are import for drug resistance,” he says. However, Rosen notes that the results in mice were not as promising as the drug’s performance in cells. He says that the cancer field is hampered by a lack of good animal models to determine which drugs will be relevant for therapies. The problem, he says, is “once you pull out a compound or drug, then how do you actually go the next step and show that it’s really going to work?”

Weinberg calls the study “the first step in the direction of trying to eliminate these cells in tumors.” He believes that even if the role of cancer stem cells in different kinds of cancer has not been resolved, “we have no doubt that getting rid of them is going to be an important part of creating cures.”

Although this study focused on breast cancer, the researchers anticipate that the screen could be applied to any kind of epithelial cancer. Gupta says that while targeting cancer stem cells may not necessarily be a “magic bullet” in cancer treatment, “if you have a certain subpopulation of cancer cells that are resistant to standard treatment, you would want to find a compound that targets these cells.” He adds that a drug that targets cancer stem cells could be used in combination with standard treatments to ensure that resistant cells are not left behind.

0 comments about this story. Start the discussion »

Credit: Piyush Gupta, Kai Tao, and Charlotte Kuperwasser

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »