Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Noy’s work, described this week in the Proceedings of the National Academy of Sciences, opens new avenues because it makes the nanowires more like cells, says Yi Cui, assistant professor of materials science and engineering at Stanford University. With Charles Lieber, a chemist at Harvard University, Cui has made silicon nanowires into very sensitive sensors by coating the nanowires with antibodies. The sensors could, for example, detect blood proteins characteristic of cancer. Noy’s work, Cui says, “is a really creative way to integrate a transistor with a cell membrane.” By coating the nanowires, Noy can take advantage of everything that biological cell membranes have to offer, including the ability to sense and respond to voltage changes, as well as ions, proteins, and other biomolecules. This range of functionality can’t be achieved with antibodies, says Cui.

Next, Noy plans to develop more-sophisticated nanowire-hybrid devices. So far, each device has been equipped with only one type of ion channel, which limits the complexity of the functions they can carry out. (Biological cells are coated with many different membrane proteins.)

The researchers will also begin testing the devices’ interactions with living cells. Other researchers, including Peidong Yang at the University of California, Berkeley, and Harvard’s Lieber, have used bare silicon nanowires to interface with neurons, stem cells, heart cells, and other tissues. They’ve shown that the nanowires can send and receive electrical signals with very high spatial resolution, even within single cells. Noy’s initial work remains a proof of concept.

0 comments about this story. Start the discussion »

Credit: Aleksandr Noy

Tagged: Computing, Materials, diagnostics, transistors, nanowires, neural interface, neural prostheses

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »