Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Electroplating involves passing a current through an electrolyte solution containing positive metal ions. The object that needs to be coated is given a negative charge and immersed in the electrolyte. The positive ions are attracted to the negative surface, creating a thin layer of metal.

The Fraunhofer researchers make the nanocapsules separately before adding them to an electrolyte solution. But making capsules that survive the electroplating process was not easy–the harsh electrolytes can easily degrade the capsules, Holeczek says. Additionally, “the very tiny capsules tend to stick to each other once introduced in an aqueous medium.” So the researchers had to add a proprietary mix of chemicals to the electrolyte solution, and to the capsules themselves, to prevent this from happening.

As a result, the nanocapsules can be integrated into the thin plating without affecting its hardness and other mechanical properties, Holeczek says. They are also distributed evenly through the metal layer, which means there’s a better chance that the capsules will open even when damage is minor.

Paul Braun, a materials science and engineering professor at the University of Illinois at Urbana-Champaign, has made a microcapsule healing system that can be added to a wide range of paints and protective coatings and is now being marketed. He says that making the capsules too small could defeat the purpose: “If you have a 15-micrometer-wide scratch, then you can’t release enough material to fill the crack plane.”

However, once the researchers come up with the appropriate chemistries to show that the material can heal itself, Braun says, it could “open up a whole new opportunity space.”

1 comment. Share your thoughts »

Credit: Fraunhofer IPA

Tagged: Computing, Materials, nanoparticles, engineering, nanofabrication, self-healing materials, corrosion

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me