Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The drug heparin is widely used to prevent blood from clotting in medical procedures ranging from dialysis to open-heart surgery. With a $6 billion market, it is one of the most common drugs used in hospitals today. But its widespread use belies its crude origins: more than 90 years after it was discovered, heparin is still made from pig intestines. But a new microfluidics chip, which mimics the actions of one of the cell’s most mysterious organs, may help change that. Researchers at Rensselaer Polytechnic Institute in Troy, NY, have created the first artificial cellular organelle and are using it to better understand how the human body makes heparin.

Scientists have been working to create a synthetic version of the medication, because the current production method leaves it susceptible to contamination–in 2008, such an incident was responsible for killing scores of people. But the drug has proven incredibly difficult to create in a lab.

Much of the mystery of heparin production stems from the site of its natural synthesis: a cellular organelle called the Golgi apparatus, which processes and packages proteins for transport out of the cell, decorating the proteins with sugars to make glycoproteins. Precisely how it does this has eluded generations of scientists. “The Golgi was discovered over 100 years ago, but what happens inside it is still a black box,” says Robert Linhardt, a biotechnologist at Rensselaer who’s been working on heparin for nearly 30 years and is lead author of the new study. “Proteins go in, glycoproteins come out. We know the enzymes that are involved now, but we don’t really know how they’re controlled.”

To better understand what was going on inside the Golgi, Linhardt and his colleagues decided to create their own version. The result: the first known artificial cell organelle, a small microfluidics chip that mimics some of the Golgi’s actions. The digital device allows the researchers to control the movement of a single microscopic droplet while they add enzymes and sugars, split droplets apart, and slowly build a molecule chain like heparin. “We can essentially control the process, like the Golgi controls the process,” Linhardt says. “I think we have a truly artificial version of the Golgi. We could actually design something that functions like an organelle and control it. The next step is to make more complicated reaction combinations.”

“People have had bits and pieces of the toolbox for making these important carbohydrates, but one thing you should potentially do is try to emulate nature, or at least figure out how it works,” says Paul DeAngelis, a biochemist and molecular biologist at the University of Oklahoma who was not involved in the research. “The miniaturization that they’re doing–having little bubbles of liquid fuse and go to different compartments with different catalysts under different conditions–that’s how your body and the Golgi apparatus works. It’s a nice model.”

1 comment. Share your thoughts »

Credit: Courtesy JACS

Tagged: Biomedicine, synthetic biology, microfluidics, bioengineering, drug, heparin

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me