Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

By adding fluorescent dyes to DNA and then spinning the DNA strands into nanofibers, researchers at the University of Connecticut have made a new material that emits bright white light. The material absorbs energy from ultraviolet light and gives off different colors of light–from blue to orange to white–depending on the proportions of dye it contains.

The researchers, led by chemistry professor Gregory Sotzing, create white-light-emitting devices by coating ultraviolet (UV) light-emitting diodes (LEDs) with the material. They are even able to fine-tune the white color tone to make it warm or cold, as they report in a paper published online in the journal Angewandte Chemie.

The new material could be used to make a novel type of organic light bulb. The light emitters should also be longer-lasting because DNA is a very strong polymer, Sotzing says. “It’s well beyond other polymers [in strength],” he notes, adding that it lasts 50 times longer than acrylic.

The color-tunable DNA material relies on an energy-transfer mechanism between two different fluorescent dyes. The key is to keep the dye molecules separated at a distance of 2 to 10 nanometers from each other. When UV light is shined on the material, one dye absorbs the energy and produces blue light. If the other dye molecule is at the right distance, it will absorb part of that blue-light energy and emit orange light.

By changing the ratio of the two dyes, the researchers can alter the combined color of light that the material gives off. Varying the amount of dye also lets them make finer tweaks. For example, by increasing the proportion of dye in the DNA from 1.33 percent to 10 percent, they can change the white light from cool to warm. “As you go across the white spectrum, if you want a soft yellow-type light or blue-type light, you can get these very easily with the DNA system,” Sotzing says.

Others have used nanostructured materials such as silica nanoparticles and block copolymers–self-assembled materials containing two linked polymer chains–to get the right spacing between the two dyes. But, says David Walt, a chemistry professor at Tufts University, “the advantage in the present system seems to be that the DNA fibers orient the dyes in an optimum way for efficient [fluorescence energy transfer] to occur.” Furthermore, when larger amounts of dye are used in the other materials, they start to aggregate. This has two effects: it decreases energy transfer between them, dimming the light output, and it also prevents precise color tuning.

5 comments. Share your thoughts »

Credit: Angewandte Chemie

Tagged: Energy, Materials, DNA, light, LED, nanofibers, fibers

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »