Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

They have been used to model climate change, forecast economic trends, and simulate the intricate complexities folding proteins. Now IBM has something new in store for high-performance computers: heating buildings.

Thanks to a novel on-chip water-cooling system developed by the company, the thermal energy from a cluster of computer processors can be efficiently recycled to provide hot water for an office, says Bruno Michel, manager of advanced thermal packaging at IBM’s Zurich Research Laboratory, in Switzerland. The goal, he says, is to improve the energy efficiency of large computing clusters and reduce their environmental impact.

A pilot scheme involving a computer system fitted with the technology is expected to save up to 30 tons of carbon dioxide emissions per year–the equivalent of an 85 percent carbon footprint reduction. A novel network of microfluidic capillaries inside a heat sink is attached to the surface of each chip in the computer cluster, which allows water to be piped to within microns of the semiconductor material itself. Despite its close proximity to the circuitry, there is no danger of leakage, says Michel, because the capillaries are hermetically sealed. By having water flow so close to each chip, heat can be removed more efficiently. Water heated to 60 °C is then passed through a heat exchanger to provide heat that is delivered elsewhere.

IBM has spent several years developing the microfluidic cooling technology, and it plans to test it in partnership with Swiss Federal Institute of Technology, in Zurich. A 10-teraflop computer cluster consisting of two IBM BladeCenter Servers in a single rack will be used by the university’s Computational Science and Engineering Lab to model fluid dynamics for nanotechnology research. The water will then be plumbed into the university’s heating system, where it will help heat 60 buildings. “This is the first large-scale system,” says Michel. “It’s about one-twentieth of the size of an average data center.” Ultimately, he says, the technology could help address the energy problems posed by large data centers.

Up to 50 percent of the energy consumed by a modern data center goes toward air cooling. Most of the heat is then wasted because it is just dumped into the atmosphere. There have been a few efforts to recycle the heat generated by conventional data centers. For example, a nine-story, 18,500-square-meter data center being built in London by the hosting company Telehouse Europe will provide heating for nearby offices. Other companies, including IBM, have used excess thermal energy to heat green houses or swimming pools. But reusing waste heat is expensive because usually only relatively low temperatures can be harvested, says Frank Brand, director of operations of the Dutch data-center engineering firm Imtech. “You can only get about 30 to 35 degrees Celsius,” he says.

6 comments. Share your thoughts »

Credit: IBM Zurich Research Laboratory

Tagged: Computing, Business, IBM, processors, computer processors, chip cooling

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me