Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Cohn says that the aim of his work is to bridge this gap between theory and reality. Previous versions of these algorithms have generated very complex instructions for putting together these structures, stipulating that a very large number of parameters need to be met in order to get a structure to assemble. “If you’re allowed to make elaborate potential functions, you can do elaborate things” and make wonderful materials inside the computer, he says. Now the question for theorists, Cohn says, is “Can we achieve more using simpler interactions?”

The Microsoft and MIT researchers have taken an important step toward this simplification, says Salvatore Torquato, a professor of chemistry at the Princeton Institute for the Science and Technology of Materials. Their models require a much smaller number of these potential-energy relationships than did previous ones. “That takes it from very hypothetical to something more realistic to produce in the laboratory,” says Torquato. The sophistication of the Microsoft model comes in part from introducing ideas from information theory.

The next step is to work with chemists to create one of these predicted structures in the lab. “I believe the materials science of the future will be done this way,” Torquato says of computer modeling. Whitesides believes that the theorists are still far from realizing that future because it’s still unclear whether the types of functions being developed by Cohn can be used to make self-assembling structures at all, or whether some other theoretical approach will turn out to be more useful. But work on these types of algorithms, says Whitesides, “is worth pursuing, since the resulting shouting match will help define what needs to be done” to make them useful.

1 comment. Share your thoughts »

Credit: Salvatore Torquato

Tagged: Computing, Materials, Microsoft, photonics, science, self-assembly, computer science, computer models

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me