Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new type of nuclear reactor that is designed to be manufactured in a factory rather than built at a power plant could cut construction times for nuclear power plants almost in half and make them cheaper to build. That, in turn, could make it possible for more utilities to build nuclear power plants, especially those in poor countries. The design comes from Babcock and Wilcox, a company based in Lynchburg, VA, that has made nuclear reactors for the United States Navy ships for about 50 years.

Typically, the nuclear reactors found in commercial power plants are large, each generating more than 1,000 megawatts of electricity. That’s because overall, it’s cheaper to build a single, large power plant than several smaller ones, in part because it’s not necessary to duplicate components such as containment walls and control rooms. But this approach also requires taking a big financial risk, which is one of the reasons that it’s been decades since the last nuclear power plant was built. Each plant can cost $9 billion or more–too much for all but the largest utilities to afford–and it can take more than five years from the time that construction starts to the time that the plant starts generating electricity and providing revenue to cover construction costs, says Andrew Kadak, a professor of nuclear engineering at MIT.

The new Babcock and Wilcox reactor design could make nuclear power plants less of a financial risk, Kadak says. The reactors are much smaller, designed to generate 150 megawatts each, but could also be strung together to generate as much as a conventional nuclear power plant. They also integrate two separate components of a conventional power plant in a single package: the reactor itself and the equipment used to generate steam from the heat that the reactor produces. As a result, the entire system is small enough to be shipped on a railcar. And because the system can be shipped, it can be manufactured at a central facility and then delivered to the site of a future power plant.

Building a reactor in a factory should save construction time, says Kadak. He estimates that what takes eight hours to do in the field could be done in just one hour in a factory. Once the reactor is manufactured, it would then be shipped to the site of a power plant along with the necessary containment walls, turbines for generating electricity, control systems, and so on. Christofer Mowry, CEO of Babcock and Wilcox, estimates that total construction time will be three years–at least two years less than conventional construction would take.

The reduced construction time could save on both construction and financing costs, since less time would be spent waiting for the plant to start producing power. The design also avoids a bottleneck in conventional nuclear power plant construction, which is that the large reactor vessel–a pressurized chamber containing the reactor core and necessary coolant–can only be manufactured in a few plants in the world, and none of these is in the United States, Mowry says.

35 comments. Share your thoughts »

Credit: Babcock and Wilcox

Tagged: Energy, carbon dioxide, nuclear energy, Babcock & Wilcox

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me