Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new water-treatment technique that combines two expensive methods could prove a cheaper and more efficient way to remove hard-to-clean contaminants. The technology combines photocatalysis, which uses light to break down pollutants, and electrochemical oxidation, which uses an electrical current to do the same.

Aicheng Chen, an associate professor and Canada Research Chair of material and environmental chemistry at Lakehead University, in Ontario, has filed for a patent on the process and says that it could be commercialized within two years. Chen combined the two water-treatment methods by creating a dual-purpose electrode. On one side, the electrode is coated with a photocatalyst, and on the other with an electrocatalyst. Chen tested the electrode’s ability to remove two different nitrophenols–chemicals that are frequently used to manufacture drugs, pesticides, fungicides, and dyes and are commonly found in industrial wastewater. The dual-function electrode removed between 85 and 90 percent of the notoriously hard-to-remove pollutants over three hours, compared with only 30 and 60 percent for either technique alone. Chen’s results were published last month in the journal Environmental Science and Technology.

Photocatalysis and electrochemical oxidation have both been studied extensively for their use in water treatment but are not widely employed because neither is efficient enough to justify the cost. In photocatalysis, ultraviolet radiation strikes a catalyst–often titanium dioxide–boosting electrons in the material to a higher energy state. This, in turn, leaves free positively charged holes to oxidize pollutants. But photocatalysis is not very efficient because often the electrons simply rebind to the holes.

Electrochemical oxidation works by passing a current through a catalyst in water to oxidize pollutants. When combined with photocatalysis, this process boosts the efficiency in part because the current prevents the electrons and holes generated through photocatalysis from recombining.

The most economical and commonly used water treatment employs bacteria to break down pollutants. But biological treatment is not always the most effective, particularly for effluents with high concentrations of organic or toxic compounds, so water has to be treated repeatedly, often with chemicals like chlorine, which adds to the cost.

“Biological treatment is not useful for all wastewater,” says Chen. “In water with high concentrations of pollutants, very high pH, or very low pH, it is difficult for the bacteria to survive.”

According to a recent report by Lux Research, water use is projected to grow globally to 40 percent by 2030, and water-related revenues are projected to grow from around $500 billion in 2007 to nearly $1 trillion by 2030. Such forecasts have led to a surge of interest in new, potentially more efficient water-treatment technologies in recent years. As demand for clean water continues to grow, researchers are looking for new ways to treat contaminated water; according to another Lux report, an array of options is needed because the number of hard-to-remove contaminants found in wastewater is also growing.

1 comment. Share your thoughts »

Credit: Aicheng Chen

Tagged: Energy, Materials, chemistry, water, pollutants, water purification

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me