Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Safety problems with lithium-metal batteries can arise when they’re recharged. “When you charge and discharge, you have to electroplate and strip the metal over and over again,” says Dahn, who is not a contributor to the IBM project. Over time, just as in a lithium-ion battery, the lithium-metal surface becomes rough, which can lead to thermal runaway, when the battery literally burns until all the reactants inside are used up. But Narayan says that lithium-air batteries are inherently safer than previously developed lithium-metal batteries as well as today’s lithium-ion batteries because only one of the reactants is contained in the cell. “A lithium-air cell needs air from outside,” says Narayan. “You will never get a runaway reaction because air is limited.”

PolyPlus Battery has been working on lithium metal-air technology for about six years and has some dramatic evidence of the technology’s viability: floating among clownfish in an aquarium tank at the company’s headquarters, a lithium-metal battery pulls in oxygen from the salt water to power a green LED. The company has also developed a prototype battery that pulls oxygen from ambient air. But Steven Visco, founder and vice president of research at the company, says that lithium metal-air batteries are “still a young technology that’s not ready to be commercialized.”

IBM’s Narayan points to two remaining major problems with lithium metal-air technology. First, the design of the cathode needs to be optimized so that the lithium oxide that forms when oxygen is pulled inside the battery won’t block the oxygen intake channels. Second, better catalysts are needed to drive the reverse reaction that recharges the battery.

Narayan says that it won’t be clear how much money and how much time the project will take until about a year and half from now, after research has begun. He estimates that the company will devote about five years to the project. IBM will probably not make the batteries but will license the technology to manufacturers.

12 comments. Share your thoughts »

Credit: PolyPlus

Tagged: Energy, Materials, IBM, electric cars, battery, energy storage, grid

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me