Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A comprehensive new analysis of water use in biofuel crop production finds that jatropha, an oil-rich plant championed for its ability to grow in arid regions where food crops cannot, is the biggest water hog of them all.

Researchers from the University of Twente, in the Netherlands, report in a recent issue of the Proceedings of the National Academy of Sciences that jatropha requires five times as much water per unit of energy as sugarcane and corn, and nearly ten times as much as sugar beet–the most water-efficient biofuel crop, according to the same study.

In recent years, as corn and other biofuel came under fire for driving up the cost of food production, some biofuel producers turned to Jatropha curcas, a weed that grows wild throughout the tropics and semitropics and produces seeds rich in oil.

In 2007, the oil-industry heavyweight BP teamed up with British biofuels company D1 Oils on a five-year, £80 million project to cultivate the plant in India, Southeast Asia, and Southern Africa. Together, the companies have planted more than 200,000 hectares so far. And the plant made headlines again late last year, when it became the first non-food-based biofuel to power a jet engine. But mounting evidence suggests that jatropha is not as ideal as once thought.

“The claim that jatropha doesn’t compete for water and land with food crops is complete nonsense,” says study coauthor Arjen Hoekstra. The researcher says it’s true that the plant can grow with little water and can survive through periods of drought, but to flourish, it needs good growing conditions just like any other plant. “If there isn’t sufficient water, you get a low amount of oil production,” Hoekstra says.

Hoekstra and his colleagues assessed the water footprint of 13 different biofuel crops. Their calculations included regional estimates of how much rainwater each crop received and how much additional water would be required through irrigation for optimal growth. The study also considered evaporation rates during the growing season in the main production areas of each crop, and the average yields of each from 1997 to 2001. The figures were then averaged by country and globally to come up with a single water-footprint figure–per liter of ethanol or biodiesel–for each crop.

“You see a big difference depending on the country where the biomass is produced, different climates, different agricultural practices, the crop being used, whether it is a starch or sugar crop used for bioethanol, an oil crop for biodiesel, or a crop that is burned for electricity generation,” Hoekstra says.

The team calculated that jatropha requires an average of 20,000 liters of water for every liter of biodiesel produced in India, Indonesia, Nicaragua, Brazil, and Guatemala–the only countries for which jatropha production figures were available. For all the other crops, the researchers used much more comprehensive–and thus truly global–data from the Food and Agriculture Organization of the United Nations. Soybeans and rapeseed, the two other biodiesel crops considered in the study, were next highest in terms of water consumption, each requiring roughly 14,000 liters of water per liter of fuel.

9 comments. Share your thoughts »

Credit: Immersia, GNU Free Documentation License

Tagged: Energy, biofuel, oil, biofuel crops, weeds, jatropha

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me