Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at Rutgers University’s Winlab and NEC Laboratories have developed a system that improves Internet access on the road. The system, called R2D2, uses special antennas and novel software to let users upload big chunks of information–like a video or a picture–over Wi-Fi significantly faster than other systems designed for use in vehicles.

Currently, a cell phone or computer accessing the Internet from a moving vehicle transmits to single base stations, even though the vehicle may move rapidly in and out of range. This can make Internet connections spotty, as anyone trying to access Wi-Fi on a bus knows.

The Rutgers researchers improved such connections by combining two existing techniques: directionality and diversity. Directionality involves focusing all of the radio energy from an antenna in a particular direction. This increases the average signal quality but can also cause the user to suddenly lose her Internet connection when the base tower is out of range. The other method, diversity, spreads out the antenna’s signal equally in all directions to encompass as many base towers as possible. This minimizes signal loss and fluctuations but weakens the signal. While most systems use one of these methods, R2D2 takes advantage of both.

“There’s an inherent paradox in using diversity and directionality,” says Ratul Mahajan, a Microsoft researcher who helped develop a vehicular Wi-Fi system (called ViFi) that uses diversity only. “R2D2 shows that it’s better to focus on the middle path between [these two techniques]. They did a good job of showing that this is one way to do it that is practical and brings significant gains.”

Kishore Ramachandran, a researcher at NEC Labs and lead author of the R2D2 work, will present it at the 2009 Mobile Systems, Applications and Services Conference in June. “You have to hit the sweet spot in between these two extremes,” he says. R2D2 calculates this balance between diversity and directionality, coordinates between multiple base stations, and maintains an optimizing database–all of which speed up data transfers.

“The nice thing about the proposed scheme is that it works well with existing Wi-Fi and vehicular radio standards,” says Dipankar Raychaudhuri, a researcher at Rutgers who was not involved in the work. The TR10 recipient adds that R2D2 could potentially “be really useful for emerging services involving cars on highways.”

When a user wants to, for example, upload a video to YouTube, information from the phone or laptop transmits to R2D2’s antenna, which sits on top of a vehicle. R2D2 relays that information to a group of Wi-Fi base stations through the fastest wireless path. The system also figures out how much to widen or narrow its antenna beam–it can warp the signal into multiple lobes, if needed–to reach the necessary base stations. To maintain its high signal quality, R2D2 continually switches base stations as the vehicle moves out of range.

0 comments about this story. Start the discussion »

Credits: Copyright ACM 2009; to appear in the 7th International Conference on Mobile Systems, Applications, and Services

Tagged: Computing, Web, Internet, networks, Wi-Fi, antenna

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me