Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

For decades scientists have known that people with Down syndrome, who have an extra copy of chromosome 21, get certain types of cancer at dramatically lower rates than normal. Now, partly by using stem cells derived from the skin of an individual with Down syndrome, researchers at Children’s Hospital Boston have pinpointed the gene that appears to underlie the cancer-protective effect.

The researchers say the results of their study, which were published today in Nature, may point to a promising new target for future cancer treatments. And according to stem-cell biologists, the work also highlights a growing trend in the field: harnessing disease-specific stem cells not as therapies but rather as models for understanding particular genetic disorders.

Stem cells “can be useful not simply because you take them and transplant them,” says Evan Snyder, director of the stem cells and regenerative medicine program at the Burnham Institute for Medical Research in San Diego. “They are useful as models of disease that reveal other kinds of therapies.” Snyder was not involved in the new study.

The late Judah Folkman, a cancer researcher renowned for pioneering the notion that blocking angiogenesis–the growth of new blood vessels–can prevent tumors from thriving, hypothesized that the lower cancer rates associated with Down syndrome might be traced to anti-angiogenesis genes on the 21st chromosome. So Sandra Ryeom, a member of the Folkman Laboratory in the Vascular Biology Program at Children’s Hospital, zeroed in on a region on chromosome 21 known to encode a regulator of blood vessel growth called DSCR1.

In chromosomally normal mice, the standard two copies of the Dscr1 gene produce just enough protein to help reign in normal blood-vessel growth, but not enough to stem the angiogenesis overload triggered by a developing tumor. But in mice with an artificial version of Down syndrome (and thus a third copy of the Dscr1 gene), Ryeom found that the surplus of DSCR1 protein kept abnormal angiogenesis–and the resulting tumor proliferation–in check.

While Ryeom and her colleagues suspect that DSCR1 works in concert with a handful of other chromosome 21 genes, they confirmed that the protein plays a central role in tumor suppression. A third copy of the Dscr1 gene alone was enough to stifle cancer formation in otherwise normal mice, though not to the same degree as in the Down syndrome mice.

To confirm that the gene is relevant in human cancers, Ryeom and her colleagues created a custom line of stem cells from skin cells taken from an individual with Down syndrome. Using a relatively new technique called induced pluripotent stem (iPS) cell reprogramming, researchers can express specific genes in differentiated adult cells and revert them to an earlier developmental state, where they are capable of giving rise to many different cell types.

0 comments about this story. Start the discussion »

Credit: Kwan-Hyuck Baek et al., Children’s Hospital Boston

Tagged: Biomedicine, cancer, stem cells, iPS cells, Down Syndrome, tumors

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me