Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

One of the main challenges of integrating an ionic-cooling system into a laptop was designing a sufficiently compact voltage converter capable of converting the laptop battery’s 12 volts DC into the approximately 3,000 volts required to operate the cooler. Using a power supply from a cold cathode fluorescent lamp, engineers at the company were able to construct a supply that is only three centimeters square.

Tessera isn’t the only company looking at ionic breeze as a means to cool consumer electronics. Researchers at Garimella’s own lab at Purdue have demonstrated a similar technology, which is being developed commercially by an early-stage Silicon Valley startup called Ventiva.

Neither technology is quite ready for the next generation of laptops, though. A major challenge will be ensuring the reliability of the electrodes. Laptops are built to operate for at least 30,000 hours, and in early tests of the ionic-cooling system, certain electrode materials corroded too quickly. Without giving specifics, due to pending patents, Honer says that engineers at the company have identified better materials and are focusing on optimizing their lifetime.

Another hurdle for the technology is the accumulation of dust. Honer says that his engineers are trying to make sure that the ionic cooler is “as insensitive to dust as a fan.” He adds that one way to protect the cooler from potentially damaging particles is to use a prefilter.

According to Craig Mitchell, senior vice president of the Interconnect, Components, and Materials division of Tessera, the company plans to “be prepared to commercialize next year.” Mitchell could not say how much the ionic cooler will cost, but he said that it would be in the “ballpark of where it needs to be.”

Honer cautions, however, that the technology is still relatively young. “It’s still fairly early in its adoption curve,” he says.

7 comments. Share your thoughts »

Credit: Tessera

Tagged: Computing, chips, microprocessor, chip cooling

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me