Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Seth Coe-Sullivan flicks the switches on two desk lamps, and even from across the conference room, it’s immediately obvious which light the chief technology officer of QD Vision is there to brag about. The light coming from the lamp on the left is a harsh bluish white. The lamp on the right casts a warmer, more yellow glow. Coe-Sullivan holds a hand under each lamp. The hand under the bluish light looks pale and sickly; the other looks darker and healthier. The harsher light lacks wavelengths in the red end of the spectrum, so there’s no light to illuminate the reddish tinge that blood provides to human skin.

QD Vision, based in Watertown, MA, is promoting a new LED-based lamp that it made with Nexxus Lighting of Charlotte, NC. Nexxus makes a lamp designed to screw into standard sockets used in recessed ceiling lighting. It consists of an array of white-light LEDs encircled by fins that remove excess heat. QD Vision adds an optic–a plastic cover with a special coating that snaps into place over the LEDs.

It’s that coating that makes the difference in the quality of the light. It consists of quantum dots–tiny bits of semiconductor material just a few nanometers in diameter. When excited by a light source–in this case, the LEDs–quantum dots radiate light in a wavelength that varies according to the size of the dot: a two-nanometer dot gives off blue light, a four-nanometer dot emits green, and a six-nanometer dot produces red. The company makes the dots in controlled sizes, then mixes them in the right ratio to get the desired color.

This color-tailoring ability solves one of the major problems with using LEDs for general lighting applications. LEDs are appealing because they last for years, use perhaps 20 percent of the electricity of a standard incandescent bulb, and are highly efficient at converting electricity into visible light instead of into heat. But to make white light, you either have to mix together LEDs of different colors or use a blue LED coated with a phosphor that emits yellow light to produce a whitish mix. The problem with the phosphors is that they don’t emit evenly across the visible spectrum. They tend to have gaps in the green section and even more so in the red, leading to the harsher, bluish light. “You can’t precisely tailor phosphors anywhere in the visible spectrum,” says Dan Button, QD Vision’s CEO.

16 comments. Share your thoughts »

Credit: QD Vision

Tagged: Energy, Materials, optics, LED, quantum dots, QD Vision, Seth Coe-Sullivan

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me