Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Today marks the start of the IEEE International Conference on Robotics and Automation (ICRA 2009) in Kobe, Japan, where researchers from around the world will gather to discuss the latest advances in robotics–from cutting-edge climbing machines to robots that politely ask for directions.

Researchers from the University of Pennsylvania will present the latest version of RiSE, a four-legged robot that can both scamper along the ground and rapidly climb a tree or a pole. RiSE V3 was designed and built at Boston Dynamics–the company behind the four-legged military robot BigDog. It has four legs, and tiny claws made from surgical needles that can dig into a vertical surface. The robot’s front legs are long enough to hug a telephone pole, and it can climb at 21 centimeters per second.

“RiSE V3 is the first general-purpose legged machine to achieve this vertical climbing speed,” says Daniel Koditschek, a professor of electrical and systems engineering at the University of Pennsylvania, who led the work. Because the robot can walk, climb, and rest quietly on a pole while conserving energy (watch a video), Koditschek says that it could “play an invaluable role in search and rescue, reconnaissance, surveillance, or inspection applications.”

Another mobile robot set to debut at the event is Adelopod, developed by researchers at the University of Minnesota. Adelopod, which is about the size of a video controller, doesn’t use legs or even wheels to get around. Instead, it flips itself over and over using a pair of 12-centimeter arms (video of Adelpod in action). This tumbling mode of locomotion is simple, saves energy, and doesn’t require complex hardware, say the researchers involved. “Given its size, it can go places that other robots cannot,” says Nikos Papanikolopoulos, director of the university’s Center for Distributed Robotics. The group has also developed the larger Loper robot, which can carry several Adelopods and scatter them throughout an area.

Researchers at the Institute of Automatic Control Engineering at the Technical University of Munich (TUM), in Germany, have designed a robot that can find its way around a city without GPS or preloaded maps. It does so by asking pedestrians for directions and using gesture tracking and voice recognition to interpret commands. It also uses human tracking, obstacle detection, and map building to guide itself around a busy city. “The novelty about our research is that we have a robotic system that uses human instructions as global waypoints for navigation in an outdoor environment,” says Andrea Bauer, one of the researchers at TUM. “The robot can retrieve missing route knowledge just like a person, by asking passersby.” Watch a video of the robot on TUM’s website here.

Gain the insight you need on robotics at EmTech MIT.

Register today

8 comments. Share your thoughts »

Credits: Boston Dynamics
Video by Center for Distributed Robotics, University of Minnesota

Tagged: Computing, robotics, robots, robotic assistant

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me