Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Our joints are one of the first body parts to suffer the inevitable ravages of aging: cartilage may be torn in overzealous basketball games or slowly worn away over years of use. Scientists are now experimenting with a combination of stem cells and novel scaffold materials designed to mimic real tissue, in hopes of permanently vanquishing the pain that accompanies this damage and perhaps preventing the onset of arthritis. In animal models, these transplants appear to spur regeneration of cartilage that better resembles native tissue.

Cartilage damage accrues from both trauma and normal wear and tear, often culminating in osteoarthritis, a degenerative joint disease that affects about half of the population by age 65. Existing treatment for small cartilage defects typically involves inflicting additional damage on the injured joint, to encourage cell-rich blood and bone marrow to clot in the area. Or treatment involves transplants of cartilage cells, called chondrocytes, collected from a healthy joint, then grown in culture and injected into the damaged area. Both procedures trigger growth of new tissue, a scarlike version of cartilage that is more fibrous than regular cartilage and doesn’t seem to have the same durability.

“It’s like a pothole filler,” says Rocky Tuan, chief of the Cartilage Biology and Orthopedics Branch at the National Institute of Arthritis and Musculoskeletal and Skin Diseases, in Baltimore. “It’s not the same as resurfacing, but if the stuff hangs in there, it will last a couple of winters and it’s fine.”

In an effort to truly regenerate cartilage rather than simply patch it, Tuan and his colleagues have developed a nanofiber scaffold that’s structurally similar to the extracellular matrix, a fibrous material that provides support to connective tissue in the body.The scaffold is generated via electrospinning, a process adopted from the textiles industry. The researchers apply a strong electric field to a liquid polymer, which forms into long fibers in an attempt to dissipate the charge. The fibers are collected in a tangled ball, much like cotton candy.

The nanoscale structure of the material is key: experiments have shown that cells grow better on a nanoscale fiber scaffold than on a millimeter-scale one made of the same material. “These scaffolds are more on the scale of what a cell would normally see,” says Farshid Guilak, director of the Orthopaedic Bioengineering Laboratory, at Duke University, in Durham, NC, who was not involved in the research.

The scaffolds are seeded with mesenchymal stem cells–adult stem cells derived from bone marrow, fatty tissue, and other sources, and which can be differentiated into muscle, bone, fat, and cartilage. “The advantage is that you don’t have to damage other tissue to get the cells,” says Tuan.

4 comments. Share your thoughts »

Credit: Casey Korecki, Caren Aronin, and Rocky Tuan

Tagged: Biomedicine, tissue engineering, regeneration, cartilage, osteoarthritis

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me